Câu hỏi:

13/11/2024 44

Một họa tiết trang trí có dạng hình tròn bán kính \[5{\rm{\;dm}}\] được chia thành nhiều hình quạt tròn (hình vẽ), mỗi hình quạt tròn có góc ở tâm là \[7,5^\circ .\]

Diện tích tất cả các hình quạt tròn được tô màu ở hình vẽ trên là bao nhiêu đề-xi-mét vuông (làm tròn kết quả đến hàng phần trăm)?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Vì mỗi hình quạt tròn có góc ở tâm là \[7,5^\circ \] nên mỗi hình quạt tròn đó ứng với cung \[7,5^\circ .\]

Diện tích mỗi hình quạt tròn là: \[{S_q} = \frac{n}{{360}}\pi {R^2} = \frac{{7,5}}{{360}} \cdot \pi \cdot {5^2} = \frac{{25\pi }}{{48}}{\rm{\;(d}}{{\rm{m}}^2}).\]

Vì \[\frac{{360}}{{7,5}} = 48\] và các hình quạt tròn được tô màu và không được tô màu được sắp xếp xen kẽ nhau nên số hình quạt tròn được tô màu là: \[48:2 = 24\] (hình quạt tròn).

Diện tích tất cả các hình quạt tròn được tô màu là: \[S = 24{S_q} = 24 \cdot \frac{{25\pi }}{{48}} = \frac{{25\pi }}{2}{\rm{\;(d}}{{\rm{m}}^2}).\]

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông \(ABCD\) cạnh bằng \(2{\rm{\;cm}}.\) Gọi \(I,\,\,J\) lần lượt là trung điểm của \(AC,\,\,CD.\) Vị trí tương đối của đường tròn \(\left( {A;\,AI} \right)\) và \(\left( {C;\,CJ} \right)\) là

Xem đáp án » 13/11/2024 387

Câu 2:

Cho hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right).\]

Cho hai đường tròn đồng tâm  ( O ; 2 c m )  và  ( O ; 3 c m ) . Diện tích hình vành khuyên được giới hạn bởi hai đường tròn đó là (ảnh 1)

Diện tích hình vành khuyên được giới hạn bởi hai đường tròn đó là

Xem đáp án » 13/11/2024 256

Câu 3:

Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB = R.\] Trên tia đối của tia \[BA\] lấy điểm \[C\] sao cho \[BC = BA.\] Kéo dài \[CO\] cắt đường tròn \[\left( O \right)\] lần lượt tại \[D,E\] (\[D\] nằm giữa \[C,O\]). Kết luận nào sau đây là sai?

Xem đáp án » 13/11/2024 106

Câu 4:

Cho đường tròn \[\left( {O;OA} \right)\] và đường tròn \[\left( {O'} \right)\] đường kính \[OA.\] Vị trí tương đối của hai đường tròn\[\left( O \right)\] và \[\left( {O'} \right)\] là

Xem đáp án » 13/11/2024 77

Câu 5:

Cho đường tròn tâm \(O\) và điểm \(A\) nằm ngoài đường tròn. Từ \(A\) kẻ hai tiếp tiếp tuyến \(AB\) và \(AC\) của đường tròn tâm \(O\) (điểm \(B,C\) là tiếp điểm). Nếu \(\widehat {BAC} = 90^\circ \) thì tam giác \(ABO\) là

Xem đáp án » 13/11/2024 68

Câu 6:

Hai tiếp tuyến tại \(B\) và \(C\) của đường tròn \((O)\) cắt nhau tại \(A\). Khẳng định nào sau đây là sai?

Xem đáp án » 13/11/2024 65

Câu 7:

Cho đường tròn \[\left( {O;R} \right).\] Từ một điểm \[M\] nằm ngoài đường tròn kẻ các tiếp tuyến \[ME,MF\] đến đường tròn (với \[E,F\] là các tiếp điểm). Đoạn \[OM\] cắt đường tròn \[\left( O \right)\] tại \[I.\] Kẻ đường kính \[ED\] của đường tròn \[\left( O \right).\] Hạ \[FK\] vuông góc với \[ED.\] Gọi \[P\] là giao điểm của \[MD\] và \[FK.\] Cho \[FK = 6{\rm{\;cm}}\] và các khẳng định sau:

(i) Các điểm \[M,E,O,F\] cùng thuộc một đường tròn.

(ii) \[FP = PK = 3{\rm{\;cm}}.\]

Xem đáp án » 13/11/2024 56

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store