Câu hỏi:
13/11/2024 385Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là
Quảng cáo
Trả lời:
Đáp án đúng là: B
Bán kính của đường tròn \(\left( O \right)\) là: \(7:2 = 3,5{\rm{\;(cm)}}{\rm{.}}\)
Ta có \(OI = 1{\rm{\;cm}} < 4{\rm{\;cm}} - 3,5{\rm{\;cm}}\)
Do đó đường tròn \(\left( I \right)\) đựng đường tròn \(\left( O \right).\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) tiếp xúc trong thì \(OI = 5 - R > 0\)
Suy ra \[R = 5 - OI = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\]
Lời giải
Đáp án đúng là: B
Vì hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau nên ta có:
\[3{\rm{\;cm}} - 1{\rm{\;cm}} < OI < 3{\rm{\;cm}} + 1{\rm{\;cm}}\]
Hay \[2{\rm{\;cm}} < OI < 4{\rm{\;cm}}.\]
Trong các phương án đã cho, ta thấy chỉ có giá trị \(OI = 3{\rm{\;cm}}\) thỏa mãn điều kiện trên.
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.