Câu hỏi:

13/11/2024 374 Lưu

Cho đường tròn \[\left( O \right)\] đường kính \[AB\] và dây \[CD\] không đi qua tâm. Khẳng định nào sau đây là đúng?

A. \[AB < CD.\]

</>

B. \[AB > CD.\]

C. \[AB = CD.\]

D. \[AB \ge CD.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có trong một đường tròn, đường kính là dây cung lớn nhất.

Trong đường tròn \[\left( O \right)\] có\[AB\] là đường kính và dây \[CD\] không đi qua tâm nên \[AB > CD.\]

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) tiếp xúc trong thì \(OI = 5 - R > 0\)

Suy ra \[R = 5 - OI = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\]

Lời giải

Đáp án đúng là: B

Vì hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau nên ta có:

\[3{\rm{\;cm}} - 1{\rm{\;cm}} < OI < 3{\rm{\;cm}} + 1{\rm{\;cm}}\]

Hay \[2{\rm{\;cm}} < OI < 4{\rm{\;cm}}.\]

Trong các phương án đã cho, ta thấy chỉ có giá trị \(OI = 3{\rm{\;cm}}\) thỏa mãn điều kiện trên.

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Điểm bất kì bên trong đường tròn.

B. Điểm bất kì bên ngoài đường tròn.

C. Điểm bất kì trên đường tròn.

D. Tâm của đường tròn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Đường tròn không có trục đối xứng.

B. Đường tròn có duy nhất một trục đối xứng.

C. Đường tròn có hai trục đối xứng là hai đường thẳng đi qua tâm và vuông góc với nhau.

D. Đường tròn có vô số trục đối xứng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP