III. Vận dụng
Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] bằng
A. \[2 + \sqrt {11} {\rm{\;c}}{{\rm{m}}^2}.\]
B. \[4 + 2\sqrt {11} {\rm{\;c}}{{\rm{m}}^2}.\]
C. \[8\sqrt {11} {\rm{\;c}}{{\rm{m}}^2}.\]
D. \[4\sqrt {11} {\rm{\;c}}{{\rm{m}}^2}.\]
Quảng cáo
Trả lời:

Đáp án đúng là: C
Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R)\] có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]
Vì vậy \[HA = HB = \frac{{AB}}{2} = \frac{{16}}{2} = 8{\rm{\;(cm)}}{\rm{.}}\]
Chứng minh tương tự, ta được \[KC = KD = \frac{{CD}}{2} = \frac{{12}}{2} = 6{\rm{\;(cm)}}{\rm{.}}\]
Ta có \[KC = KM + MC.\] Suy ra \[KM = KC - MC = 6 - 2 = 4{\rm{\;(cm)}}{\rm{.}}\]
Tứ giác \[OHMK\] có: \[\widehat {OKM} = \widehat {KMH} = \widehat {OHM} = 90^\circ \] nên tứ giác \[OHMK\] là hình chữ nhật.
Do đó \[OH = KM = 4{\rm{\;(cm)}}{\rm{.}}\]
Áp dụng định lí Pythagore cho tam giác \[OHB\] vuông tại \[H,\] ta được:
\[O{B^2} = O{H^2} + H{B^2} = {4^2} + {8^2} = 80\]. Suy ra \[R = OB = 4\sqrt 5 {\rm{\;(cm)}}{\rm{.}}\]
Áp dụng định lí Pythagore cho tam giác \[OKD\] vuông tại \[K,\] ta được: \[O{D^2} = O{K^2} + K{D^2}.\]
Suy ra \[O{K^2} = O{D^2} - K{D^2} = {R^2} - K{D^2} = {\left( {4\sqrt 5 } \right)^2} - {6^2} = 44\]
Do đó \[OK = 2\sqrt {11} {\rm{\;(cm)}}{\rm{.}}\]
Vậy diện tích hình chữ nhật \[OHMK\] là: \[S = KM \cdot OK = 4 \cdot 2\sqrt {11} = 8\sqrt {11} {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Do đó ta chọn phương án C.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(1{\rm{\;cm}}{\rm{.}}\)
B. \(2{\rm{\;cm}}.\)
C. \(4{\rm{\;cm}}.\)
D. \(8{\rm{\;cm}}.\)
Lời giải
Đáp án đúng là: B
Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) tiếp xúc trong thì \(OI = 5 - R > 0\)
Suy ra \[R = 5 - OI = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\]
Câu 2
A. \(2{\rm{\;cm}}\).
B. \(3{\rm{\;cm}}{\rm{.}}\)
C. \(4{\rm{\;cm}}\).
D. \(5{\rm{\;cm}}.\)
Lời giải
Đáp án đúng là: B
Vì hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau nên ta có:
\[3{\rm{\;cm}} - 1{\rm{\;cm}} < OI < 3{\rm{\;cm}} + 1{\rm{\;cm}}\]
Hay \[2{\rm{\;cm}} < OI < 4{\rm{\;cm}}.\]
Trong các phương án đã cho, ta thấy chỉ có giá trị \(OI = 3{\rm{\;cm}}\) thỏa mãn điều kiện trên.
Vậy ta chọn phương án B.
Câu 3
A. tiếp xúc trong.
B. \(\left( I \right)\) đựng \(\left( O \right).\)
C. cắt nhau.
D. \(\left( O \right)\) đựng \(\left( I \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Điểm bất kì bên trong đường tròn.
B. Điểm bất kì bên ngoài đường tròn.
C. Điểm bất kì trên đường tròn.
D. Tâm của đường tròn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[AB < CD.\]
</>
B. \[AB > CD.\]
C. \[AB = CD.\]
D. \[AB \ge CD.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Đường tròn không có trục đối xứng.
B. Đường tròn có duy nhất một trục đối xứng.
C. Đường tròn có hai trục đối xứng là hai đường thẳng đi qua tâm và vuông góc với nhau.
D. Đường tròn có vô số trục đối xứng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[4{\rm{\;cm}}.\]
B. \[6{\rm{\;cm}}.\]
C. \[8{\rm{\;cm}}.\]
D. \[12{\rm{\;cm}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.