Câu hỏi:

13/11/2024 146

Cho đường tròn \[\left( O \right)\] và đường thẳng \[a.\] Kẻ \[OH \bot a\] tại điểm \[H,\] biết \[OH = R.\] Khi đó, đường thẳng \[a\] và đường tròn \[\left( O \right)\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho đường tròn  ( O )  và đường thẳng  a .  Kẻ  O H ⊥ a  tại điểm  H ,  biết  O H = R .  Khi đó, đường thẳng  a  và đường tròn  ( O ) (ảnh 1)

Vì \[OH = R\] nên đường thẳng \[a\] và đường tròn \[\left( O \right)\] tiếp xúc với nhau. Khi đó \[H\] được gọi là tiếp điểm và đường thẳng \[a\] còn gọi là tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H.\]

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Nếu đường thẳng và đường tròn có duy nhất một điểm chung thì

Lời giải

Đáp án đúng là: A

Đường thẳng và đường tròn gọi là tiếp xúc với nhau nếu chúng có duy nhất một điểm chung.

Do đó ta chọn phương án A.

Lời giải

Đáp án đúng là: D

Cho đường tròn  ( O ; R )  và điểm  A  nằm ngoài  ( O ) .  Từ  A  kẻ hai đường thẳng  A B , A C  tiếp xúc với đường tròn  ( O )  (hai điểm  B , C  là các tiếp điểm). (ảnh 1)

Ta có \[D\] đối xứng với \[B\] qua \[O.\] Suy ra \[O\] là trung điểm \[BD.\] Do đó \[BD\] là đường kính của đường tròn \[\left( O \right).\]

Tam giác \[BED\] có \[EO\] là đường trung tuyến và \[EO = \frac{{BD}}{2}\] nên tam giác \[BED\] vuông tại \[E.\]

Ta có \[AB\] tiếp xúc với đường tròn \[\left( O \right)\] tại \(B\) nên \[AB \bot BD.\]

Xét \[\Delta BED\] và \[\Delta ABD,\] có:

\[\widehat {BED} = \widehat {ABD} = 90^\circ \] và \[\widehat {BDE}\] là góc chung.

Do đó (g.g)

Suy ra \[\frac{{DE}}{{DB}} = \frac{{BE}}{{AB}}\] hay \[\frac{{DE}}{{BE}} = \frac{{DB}}{{AB}}.\]

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay