Cho đường tròn \[\left( {O;R} \right)\] đường kính \[BC,\] lấy điểm \[A \in \left( O \right).\] Gọi \[H\] là trung điểm của \[AC.\] Tia \[OH\] cắt đường tròn \[\left( O \right)\] tại \[M.\] Từ \[A\] vẽ tiếp tuyến với đường tròn \[\left( O \right)\] cắt tia \[OM\] tại \[N.\] Cho các khẳng định sau:
(i) \[OH \cdot ON = {R^2}.\]
(ii) \[CN\] là tiếp tuyến của \[\left( O \right).\]
Kết luận nào sau đây là đúng nhất?
A. Chỉ (i) đúng.
B. Chỉ (ii) đúng.
C. Cả (i) và (ii) đều đúng.
D. Cả (i) và (ii) đều sai.
Quảng cáo
Trả lời:

Đáp án đúng là: C
⦁ Đường tròn \[\left( O \right)\] có \[OA = OC = R\] nên tam giác \[OAC\] cân tại \[O.\]
Tam giác \[OAC\] cân tại \[O\] có \[OH\] là đường trung tuyến nên \[OH\] cũng là đường cao của tam giác, do đó \[OH \bot AC\] hay \[\widehat {OHA} = 90^\circ .\]
Vì \[AN\] là tiếp tuyến của đường tròn \[\left( O \right)\] nên \[OA \bot AN\] hay \[\widehat {OAN} = 90^\circ .\]
Xét \[\Delta OHA\] và \[\Delta OAN,\] có:
\[\widehat {OHA} = \widehat {OAN} = 90^\circ ;\] \[\widehat {AON}\] là góc chung.
Do đó (g.g). Suy ra \[\frac{{OH}}{{OA}} = \frac{{OA}}{{ON}}.\]
Vì vậy \[OH \cdot ON = O{A^2} = {R^2}.\] Do đó khẳng định (i) là đúng.
⦁ Tam giác \[OAC\] cân tại \[O\] có \[OH\] là đường trung tuyến nên \[OH\] cũng là đường phân giác của tam giác, do đó \[\widehat {AOH} = \widehat {COH}.\]
Xét \[\Delta AON\] và \[\Delta CON,\] có:
\[OA = OC = R;\] \[\widehat {AON} = \widehat {CON};\] \[ON\] là cạnh chung.
Do đó \[\Delta AON = \Delta CON\] (c.g.c).
Suy ra \[\widehat {OAN} = \widehat {OCN}.\] Nên \[\widehat {OCN} = 90^\circ .\]
Vì vậy \[OC \bot CN\] tại \[C\] hay \[CN\] là tiếp tuyến của \[\left( O \right).\] Do đó khẳng định (ii) là đúng.
Vậy ta chọn phương án C.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[BM = 2{\rm{\;cm}}.\]
B. \[BM = 6{\rm{\;cm}}.\]
C. \[BM = 8{\rm{\;cm}}.\]
D. \[BM = 4{\rm{\;cm}}.\]
Lời giải
Đáp án đúng là: D
Vì \[AC\] là tiếp tuyến của đường tròn \[\left( O \right)\] nên \[AC \bot AO\] tại \[A.\]
Áp dụng định lí Pythagore cho tam giác \[ABC\] vuông tại \[A,\] ta được:
\[B{C^2} = A{B^2} + A{C^2} = {8^2} + {6^2} = 100.\] Suy ra \[BC = 10{\rm{\;(cm)}}{\rm{.}}\]
Vì \[AC,\,\,CM\] là hai tiếp tuyến của đường tròn \[\left( O \right)\] nên áp dụng tính chất hai tiếp tuyến cắt nhau, ta được \[CM = CA = 6{\rm{\;(cm)}}{\rm{.}}\]
Ta có \[BM = BC - CM = 10 - 6 = 4{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án D.
Câu 2
A. Tam giác \[KOI\] cân tại \[K.\]
B. Tam giác \[KOI\] cân tại \[O.\]
C. Tam giác \[KOI\] cân tại \[I.\]
D. Cả A, B, C đều sai.
Lời giải
Đáp án đúng là: A
Vì đường tròn \[\left( O \right)\] có \[IA,IB\] là hai tiếp tuyến cắt nhau tại \[I\] nên \[\widehat {AOI} = \widehat {KOI}.\]
Lại có \[OA\,{\rm{//}}\,KI\] (vì cùng vuông góc với \[AI\]) nên \[\widehat {AOI} = \widehat {KIO}\] (cặp góc so le trong)
Do đó \[\widehat {KOI} = \widehat {KIO}.\]
Vì vậy tam giác \[KOI\] cân tại \[K.\]
Vậy ta chọn phương án A.
Câu 3
A. \[11,137{\rm{\;km}}.\]
B. \[128,000{\rm{\;km}}.\]
C. \[11,33{\rm{\;km}}.\]
D. \[11,314{\rm{\;km}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[15{\rm{\;cm}}.\]
B. \[12\sqrt 3 {\rm{\;cm}}.\]
C. \[18{\rm{\;cm}}.\]
D. \[6\sqrt 3 {\rm{\;cm}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[OA \bot BC.\]
B. \[OA\] là đường trung trực của đoạn \[BC.\]
C. \[AB = AC.\]
D. \[OA \bot BC\] tại trung điểm của \[OA.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[d\] là tiếp tuyến của \[\left( O \right).\]
B. \[d\] cắt \[\left( O \right)\] tại hai điểm phân biệt.
C. \[d\] tiếp xúc với \[\left( O \right)\] tại \[O.\]
D. Cả A, B, C đều đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.