Câu hỏi:

13/11/2024 2,986

Cho đường tròn \[\left( {O;R} \right)\] đường kính \[BC,\] lấy điểm \[A \in \left( O \right).\] Gọi \[H\] là trung điểm của \[AC.\] Tia \[OH\] cắt đường tròn \[\left( O \right)\] tại \[M.\] Từ \[A\] vẽ tiếp tuyến với đường tròn \[\left( O \right)\] cắt tia \[OM\] tại \[N.\] Cho các khẳng định sau:

(i) \[OH \cdot ON = {R^2}.\]

(ii) \[CN\] là tiếp tuyến của \[\left( O \right).\]

Kết luận nào sau đây là đúng nhất?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho đường tròn  ( O ; R )  đường kính  B C ,  lấy điểm  A ∈ ( O ) .  Gọi  H  là trung điểm của  A C .  Tia  O H  cắt đường tròn  ( O )  tại  M .  Từ  A  vẽ tiếp tuyến với đường tròn  ( O )  cắt tia  O M  tại  N .  Cho các khẳng định sau: (ảnh 1)

⦁ Đường tròn \[\left( O \right)\] có \[OA = OC = R\] nên tam giác \[OAC\] cân tại \[O.\]

Tam giác \[OAC\] cân tại \[O\] có \[OH\] là đường trung tuyến nên \[OH\] cũng là đường cao của tam giác, do đó \[OH \bot AC\] hay \[\widehat {OHA} = 90^\circ .\]

Vì \[AN\] là tiếp tuyến của đường tròn \[\left( O \right)\] nên \[OA \bot AN\] hay \[\widehat {OAN} = 90^\circ .\]

Xét \[\Delta OHA\] và \[\Delta OAN,\] có:

\[\widehat {OHA} = \widehat {OAN} = 90^\circ ;\] \[\widehat {AON}\] là góc chung.

Do đó (g.g). Suy ra \[\frac{{OH}}{{OA}} = \frac{{OA}}{{ON}}.\]

Vì vậy \[OH \cdot ON = O{A^2} = {R^2}.\] Do đó khẳng định (i) là đúng.

⦁ Tam giác \[OAC\] cân tại \[O\] có \[OH\] là đường trung tuyến nên \[OH\] cũng là đường phân giác của tam giác, do đó \[\widehat {AOH} = \widehat {COH}.\]

Xét \[\Delta AON\] và \[\Delta CON,\] có:

\[OA = OC = R;\] \[\widehat {AON} = \widehat {CON};\] \[ON\] là cạnh chung.

Do đó \[\Delta AON = \Delta CON\] (c.g.c).

Suy ra \[\widehat {OAN} = \widehat {OCN}.\] Nên \[\widehat {OCN} = 90^\circ .\]

Vì vậy \[OC \bot CN\] tại \[C\] hay \[CN\] là tiếp tuyến của \[\left( O \right).\] Do đó khẳng định (ii) là đúng.

Vậy ta chọn phương án C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( O \right)\] đường kính \[AD.\] Vẽ tiếp tuyến \[AC\] tại \[A\] của đường tròn, từ \[C\] trên tiếp tuyến đó vẽ tiếp tuyến thứ hai \[CM\] của đường tròn \[\left( O \right)\] (\[M\] là tiếp điểm và \[M\] khác \[A\]) cắt \[AD\] tại \[B.\] Giả sử \[AC = 6{\rm{\;cm}},AB = 8{\rm{\;cm}}.\] Độ dài \[BM\] bằng

Xem đáp án » 13/11/2024 3,164

Câu 2:

Một thủy thủ đang ở trên cột buồm của một con tàu, cách mặt nước biển \[10{\rm{\;m}}.\] Biết bán kính Trái Đất là khoảng \[6\,\,400{\rm{\;km}}.\] Tầm nhìn xa tối đa (làm tròn kết quả đến hàng phần nghìn của km) của thủy thủ đó bằng khoảng

Xem đáp án » 13/11/2024 934

Câu 3:

Cho đường tròn \[\left( O \right)\] và điểm \[A\] nằm trên đường tròn \[\left( O \right).\] Nếu đường thẳng \[d \bot OA\] tại \[A\] thì

Xem đáp án » 13/11/2024 688

Câu 4:

Hai tiếp tuyến tại \[A\] và \[B\] của đường tròn \[\left( O \right)\] cắt nhau tại \[I.\] Đường thẳng qua \[I\] vuông góc với \[IA\] cắt \[OB\] tại \[K.\] Khẳng định nào sau đây là đúng?

Xem đáp án » 13/11/2024 644

Câu 5:

Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\left( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[MAB\] là \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm}}.\] Khi đó độ dài dây \[AB\] bằng

Xem đáp án » 13/11/2024 551

Câu 6:

Hai tiếp tuyến tại \[B\] và \[C\] của đường tròn \[\left( {O;R} \right)\] cắt nhau tại \[A.\] Khẳng định nào sau đây là sai?

Xem đáp án » 13/11/2024 533
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua