Câu hỏi:

13/11/2024 5,926 Lưu

Cho đường tròn \[\left( {O;R} \right)\] đường kính \[BC,\] lấy điểm \[A \in \left( O \right).\] Gọi \[H\] là trung điểm của \[AC.\] Tia \[OH\] cắt đường tròn \[\left( O \right)\] tại \[M.\] Từ \[A\] vẽ tiếp tuyến với đường tròn \[\left( O \right)\] cắt tia \[OM\] tại \[N.\] Cho các khẳng định sau:

(i) \[OH \cdot ON = {R^2}.\]

(ii) \[CN\] là tiếp tuyến của \[\left( O \right).\]

Kết luận nào sau đây là đúng nhất?

A. Chỉ (i) đúng.

B. Chỉ (ii) đúng.

C. Cả (i) và (ii) đều đúng.

D. Cả (i) và (ii) đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho đường tròn  ( O ; R )  đường kính  B C ,  lấy điểm  A ∈ ( O ) .  Gọi  H  là trung điểm của  A C .  Tia  O H  cắt đường tròn  ( O )  tại  M .  Từ  A  vẽ tiếp tuyến với đường tròn  ( O )  cắt tia  O M  tại  N .  Cho các khẳng định sau: (ảnh 1)

⦁ Đường tròn \[\left( O \right)\] có \[OA = OC = R\] nên tam giác \[OAC\] cân tại \[O.\]

Tam giác \[OAC\] cân tại \[O\] có \[OH\] là đường trung tuyến nên \[OH\] cũng là đường cao của tam giác, do đó \[OH \bot AC\] hay \[\widehat {OHA} = 90^\circ .\]

Vì \[AN\] là tiếp tuyến của đường tròn \[\left( O \right)\] nên \[OA \bot AN\] hay \[\widehat {OAN} = 90^\circ .\]

Xét \[\Delta OHA\] và \[\Delta OAN,\] có:

\[\widehat {OHA} = \widehat {OAN} = 90^\circ ;\] \[\widehat {AON}\] là góc chung.

Do đó (g.g). Suy ra \[\frac{{OH}}{{OA}} = \frac{{OA}}{{ON}}.\]

Vì vậy \[OH \cdot ON = O{A^2} = {R^2}.\] Do đó khẳng định (i) là đúng.

⦁ Tam giác \[OAC\] cân tại \[O\] có \[OH\] là đường trung tuyến nên \[OH\] cũng là đường phân giác của tam giác, do đó \[\widehat {AOH} = \widehat {COH}.\]

Xét \[\Delta AON\] và \[\Delta CON,\] có:

\[OA = OC = R;\] \[\widehat {AON} = \widehat {CON};\] \[ON\] là cạnh chung.

Do đó \[\Delta AON = \Delta CON\] (c.g.c).

Suy ra \[\widehat {OAN} = \widehat {OCN}.\] Nên \[\widehat {OCN} = 90^\circ .\]

Vì vậy \[OC \bot CN\] tại \[C\] hay \[CN\] là tiếp tuyến của \[\left( O \right).\] Do đó khẳng định (ii) là đúng.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho đường tròn  ( O )  đường kính  A D .  Vẽ tiếp tuyến  A C  tại  A  của đường tròn, từ  C  trên tiếp tuyến đó vẽ tiếp tuyến thứ hai  C M  của đường tròn  ( O )  ( M  là tiếp điểm và  M  khác  A ) cắt  A D  tại  B .  Giả sử  A C = 6 c m , A B = 8 c m .  Độ dài  B M  bằng (ảnh 1)

Vì \[AC\] là tiếp tuyến của đường tròn \[\left( O \right)\] nên \[AC \bot AO\] tại \[A.\]

Áp dụng định lí Pythagore cho tam giác \[ABC\] vuông tại \[A,\] ta được:

\[B{C^2} = A{B^2} + A{C^2} = {8^2} + {6^2} = 100.\] Suy ra \[BC = 10{\rm{\;(cm)}}{\rm{.}}\]

Vì \[AC,\,\,CM\] là hai tiếp tuyến của đường tròn \[\left( O \right)\] nên áp dụng tính chất hai tiếp tuyến cắt nhau, ta được \[CM = CA = 6{\rm{\;(cm)}}{\rm{.}}\]

Ta có \[BM = BC - CM = 10 - 6 = 4{\rm{\;(cm)}}{\rm{.}}\]

Vậy ta chọn phương án D.

Lời giải

Đáp án đúng là: D

Một thủy thủ đang ở trên cột buồm của một con tàu, cách mặt nước biển  10 m .  Biết bán kính Trái Đất là khoảng  6 400 k m .  Tầm nhìn xa tối đa (làm tròn kết quả đến hàng phần nghìn của km) của thủy thủ đó bằng khoảng (ảnh 1)

Đổi: \[10{\rm{\;m}} = 0,01{\rm{\;km}}.\]

Gọi \[O\] là tâm Trái Đất và \[R\] là bán kính Trái Đất. Suy ra \[R = 6400{\rm{\;km}}.\]

Ta có điểm \[B\] biểu diễn vị trí con tàu và điểm \[A\] biểu diễn vị trí của thủy thủ.

Suy ra \[h = AB = 10{\rm{\;(m)}}{\rm{.}}\]

Lại có điểm \[A\] biểu diễn vị trí của thủy thủ và điểm \[C\] biểu diễn điểm xa nhất mà thủy thủ nhìn thấy. Khi đó độ dài đoạn \[AC\] gọi là tầm nhìn xa tối đa từ điểm \[A.\]

Vì \[AC\] là tiếp tuyến của đường tròn \[\left( {O;R} \right)\] tại \[C\] nên \[AC \bot OC\] tại \[C.\]

Áp dụng định lí Pythagore cho tam giác \[AOC\] vuông tại \[C,\] ta được: \[O{A^2} = A{C^2} + O{C^2}.\]

Suy ra \[A{C^2} = O{A^2} - O{C^2} = {\left( {OB + AB} \right)^2} - O{C^2}\]

\[A{C^2} = {\left( {R + h} \right)^2} - {R^2} = {\left( {6\,\,400 + 0,01} \right)^2} - 6\,\,{400^2} = 128,0001.\]

Khi đó \[AC \approx 11,314{\rm{\;(km)}}{\rm{.}}\]

Do đó tầm nhìn xa tối đa của thủy thủ đó bằng khoảng \[11,314{\rm{\;km}}.\]

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[OA \bot BC.\]

B. \[OA\] là đường trung trực của đoạn \[BC.\]

C. \[AB = AC.\]

D. \[OA \bot BC\] tại trung điểm của \[OA.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[d\] là tiếp tuyến của \[\left( O \right).\]

B. \[d\] cắt \[\left( O \right)\] tại hai điểm phân biệt.

C. \[d\] tiếp xúc với \[\left( O \right)\] tại \[O.\]

D. Cả A, B, C đều đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP