Câu hỏi:
13/11/2024 826Một thủy thủ đang ở trên cột buồm của một con tàu, cách mặt nước biển \[10{\rm{\;m}}.\] Biết bán kính Trái Đất là khoảng \[6\,\,400{\rm{\;km}}.\] Tầm nhìn xa tối đa (làm tròn kết quả đến hàng phần nghìn của km) của thủy thủ đó bằng khoảng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Đổi: \[10{\rm{\;m}} = 0,01{\rm{\;km}}.\]
Gọi \[O\] là tâm Trái Đất và \[R\] là bán kính Trái Đất. Suy ra \[R = 6400{\rm{\;km}}.\]
Ta có điểm \[B\] biểu diễn vị trí con tàu và điểm \[A\] biểu diễn vị trí của thủy thủ.
Suy ra \[h = AB = 10{\rm{\;(m)}}{\rm{.}}\]
Lại có điểm \[A\] biểu diễn vị trí của thủy thủ và điểm \[C\] biểu diễn điểm xa nhất mà thủy thủ nhìn thấy. Khi đó độ dài đoạn \[AC\] gọi là tầm nhìn xa tối đa từ điểm \[A.\]
Vì \[AC\] là tiếp tuyến của đường tròn \[\left( {O;R} \right)\] tại \[C\] nên \[AC \bot OC\] tại \[C.\]
Áp dụng định lí Pythagore cho tam giác \[AOC\] vuông tại \[C,\] ta được: \[O{A^2} = A{C^2} + O{C^2}.\]
Suy ra \[A{C^2} = O{A^2} - O{C^2} = {\left( {OB + AB} \right)^2} - O{C^2}\]
\[A{C^2} = {\left( {R + h} \right)^2} - {R^2} = {\left( {6\,\,400 + 0,01} \right)^2} - 6\,\,{400^2} = 128,0001.\]
Khi đó \[AC \approx 11,314{\rm{\;(km)}}{\rm{.}}\]
Do đó tầm nhìn xa tối đa của thủy thủ đó bằng khoảng \[11,314{\rm{\;km}}.\]
Vậy ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn \[\left( O \right)\] đường kính \[AD.\] Vẽ tiếp tuyến \[AC\] tại \[A\] của đường tròn, từ \[C\] trên tiếp tuyến đó vẽ tiếp tuyến thứ hai \[CM\] của đường tròn \[\left( O \right)\] (\[M\] là tiếp điểm và \[M\] khác \[A\]) cắt \[AD\] tại \[B.\] Giả sử \[AC = 6{\rm{\;cm}},AB = 8{\rm{\;cm}}.\] Độ dài \[BM\] bằng
Câu 2:
Cho đường tròn \[\left( {O;R} \right)\] đường kính \[BC,\] lấy điểm \[A \in \left( O \right).\] Gọi \[H\] là trung điểm của \[AC.\] Tia \[OH\] cắt đường tròn \[\left( O \right)\] tại \[M.\] Từ \[A\] vẽ tiếp tuyến với đường tròn \[\left( O \right)\] cắt tia \[OM\] tại \[N.\] Cho các khẳng định sau:
(i) \[OH \cdot ON = {R^2}.\]
(ii) \[CN\] là tiếp tuyến của \[\left( O \right).\]
Kết luận nào sau đây là đúng nhất?
Câu 3:
Cho đường tròn \[\left( O \right)\] và điểm \[A\] nằm trên đường tròn \[\left( O \right).\] Nếu đường thẳng \[d \bot OA\] tại \[A\] thì
Câu 4:
Hai tiếp tuyến tại \[B\] và \[C\] của đường tròn \[\left( {O;R} \right)\] cắt nhau tại \[A.\] Khẳng định nào sau đây là sai?
Câu 5:
Hai tiếp tuyến tại \[A\] và \[B\] của đường tròn \[\left( O \right)\] cắt nhau tại \[I.\] Đường thẳng qua \[I\] vuông góc với \[IA\] cắt \[OB\] tại \[K.\] Khẳng định nào sau đây là đúng?
Câu 6:
Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\left( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[MAB\] là \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm}}.\] Khi đó độ dài dây \[AB\] bằng
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
về câu hỏi!