Câu hỏi:

13/11/2024 287

Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\left( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[MAB\] là \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm}}.\] Khi đó độ dài dây \[AB\] bằng

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\lCho đường tròn  ( O ) ,  từ một điểm  M  ở ngoài  ( O ) ,  vẽ hai tiếp tuyến  M A  và  M B  sao cho  ˆ A M B  bằng  120 ∘ .  Biết chu vi tam giác  M A B  là  6 ( 3 + 2 √ 3 ) c m .  Khi đó độ dài dây  A B  bằngeft( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[ (ảnh 1)

Ta có \[MA,MB\] là hai tiếp tuyến của \[\left( O \right)\] cắt nhau tại \(M\) nên \[MA = MB\] và \[MO,\,\,OM\] lần lượt là tia phân giác của \[\widehat {AMB},\,\,\widehat {AOB}.\]

Khi đó \[\widehat {AMO} = \widehat {OMB} = \frac{{\widehat {AMB}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]

Ta có \[MA\] là tiếp tuyến của \[\left( O \right)\] nên \[MA \bot OA\] tại \[A.\]

Vì tam giác \[OAM\] vuông tại \[A\] nên \[AM = AO \cdot \cot \widehat {AMO} = R \cdot \cot 60^\circ = \frac{{R\sqrt 3 }}{3}.\]

Suy ra \[MB = MA = \frac{{R\sqrt 3 }}{3}.\]

Vì tam giác \[OAM\] vuông tại \[A\] nên \[\widehat {AMO} + \widehat {AOM} = 90^\circ .\]

Suy ra \[\widehat {AOM} = 90^\circ - \widehat {AMO} = 90^\circ - 60^\circ = 30^\circ .\]

Ta có \[OM\] là tia phân giác của \[\widehat {AOB}\] nên \[\widehat {AOB} = 2\widehat {AOM} = 2 \cdot 30^\circ = 60^\circ .\]

Xét tam giác \[OAB\] có \[OA = OB = R\] và \[\widehat {AOB} = 60^\circ \] nên tam giác \[OAB\] là tam giác đều.

Khi đó \[AB = OA = OB = R.\]

Ta có chu vi tam giác \[MAB\] là \(MA + MB + AB\)

Theo bài chu vi tam giác \[MAB\] bằng \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm,}}\] suy ra:

\[\frac{{R\sqrt 3 }}{3} + \frac{{R\sqrt 3 }}{3} + R = 6\left( {3 + 2\sqrt 3 } \right)\,\]

\[R \cdot \left( {\frac{{2\sqrt 3 + 3}}{3}} \right) = 6\left( {3 + 2\sqrt 3 } \right)\]

\[R = 18{\rm{\;(cm)}}{\rm{.}}\]

Vì vậy \[AB = R = 18{\rm{\;(cm)}}{\rm{.}}\] Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( {O;R} \right)\] đường kính \[BC,\] lấy điểm \[A \in \left( O \right).\] Gọi \[H\] là trung điểm của \[AC.\] Tia \[OH\] cắt đường tròn \[\left( O \right)\] tại \[M.\] Từ \[A\] vẽ tiếp tuyến với đường tròn \[\left( O \right)\] cắt tia \[OM\] tại \[N.\] Cho các khẳng định sau:

(i) \[OH \cdot ON = {R^2}.\]

(ii) \[CN\] là tiếp tuyến của \[\left( O \right).\]

Kết luận nào sau đây là đúng nhất?

Xem đáp án » 13/11/2024 2,715

Câu 2:

Cho đường tròn \[\left( O \right)\] đường kính \[AD.\] Vẽ tiếp tuyến \[AC\] tại \[A\] của đường tròn, từ \[C\] trên tiếp tuyến đó vẽ tiếp tuyến thứ hai \[CM\] của đường tròn \[\left( O \right)\] (\[M\] là tiếp điểm và \[M\] khác \[A\]) cắt \[AD\] tại \[B.\] Giả sử \[AC = 6{\rm{\;cm}},AB = 8{\rm{\;cm}}.\] Độ dài \[BM\] bằng

Xem đáp án » 13/11/2024 2,666

Câu 3:

Một thủy thủ đang ở trên cột buồm của một con tàu, cách mặt nước biển \[10{\rm{\;m}}.\] Biết bán kính Trái Đất là khoảng \[6\,\,400{\rm{\;km}}.\] Tầm nhìn xa tối đa (làm tròn kết quả đến hàng phần nghìn của km) của thủy thủ đó bằng khoảng

Xem đáp án » 13/11/2024 760

Câu 4:

Hai tiếp tuyến tại \[A\] và \[B\] của đường tròn \[\left( O \right)\] cắt nhau tại \[I.\] Đường thẳng qua \[I\] vuông góc với \[IA\] cắt \[OB\] tại \[K.\] Khẳng định nào sau đây là đúng?

Xem đáp án » 13/11/2024 446

Câu 5:

Cho đường tròn \[\left( O \right)\] và điểm \[A\] nằm trên đường tròn \[\left( O \right).\] Nếu đường thẳng \[d \bot OA\] tại \[A\] thì

Xem đáp án » 13/11/2024 432

Câu 6:

Hai tiếp tuyến tại \[B\] và \[C\] của đường tròn \[\left( {O;R} \right)\] cắt nhau tại \[A.\] Khẳng định nào sau đây là sai?

Xem đáp án » 13/11/2024 419

Bình luận


Bình luận