Câu hỏi:

13/11/2024 304

Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\left( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[MAB\] là \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm}}.\] Khi đó độ dài dây \[AB\] bằng

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\lCho đường tròn  ( O ) ,  từ một điểm  M  ở ngoài  ( O ) ,  vẽ hai tiếp tuyến  M A  và  M B  sao cho  ˆ A M B  bằng  120 ∘ .  Biết chu vi tam giác  M A B  là  6 ( 3 + 2 √ 3 ) c m .  Khi đó độ dài dây  A B  bằngeft( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[ (ảnh 1)

Ta có \[MA,MB\] là hai tiếp tuyến của \[\left( O \right)\] cắt nhau tại \(M\) nên \[MA = MB\] và \[MO,\,\,OM\] lần lượt là tia phân giác của \[\widehat {AMB},\,\,\widehat {AOB}.\]

Khi đó \[\widehat {AMO} = \widehat {OMB} = \frac{{\widehat {AMB}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]

Ta có \[MA\] là tiếp tuyến của \[\left( O \right)\] nên \[MA \bot OA\] tại \[A.\]

Vì tam giác \[OAM\] vuông tại \[A\] nên \[AM = AO \cdot \cot \widehat {AMO} = R \cdot \cot 60^\circ = \frac{{R\sqrt 3 }}{3}.\]

Suy ra \[MB = MA = \frac{{R\sqrt 3 }}{3}.\]

Vì tam giác \[OAM\] vuông tại \[A\] nên \[\widehat {AMO} + \widehat {AOM} = 90^\circ .\]

Suy ra \[\widehat {AOM} = 90^\circ - \widehat {AMO} = 90^\circ - 60^\circ = 30^\circ .\]

Ta có \[OM\] là tia phân giác của \[\widehat {AOB}\] nên \[\widehat {AOB} = 2\widehat {AOM} = 2 \cdot 30^\circ = 60^\circ .\]

Xét tam giác \[OAB\] có \[OA = OB = R\] và \[\widehat {AOB} = 60^\circ \] nên tam giác \[OAB\] là tam giác đều.

Khi đó \[AB = OA = OB = R.\]

Ta có chu vi tam giác \[MAB\] là \(MA + MB + AB\)

Theo bài chu vi tam giác \[MAB\] bằng \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm,}}\] suy ra:

\[\frac{{R\sqrt 3 }}{3} + \frac{{R\sqrt 3 }}{3} + R = 6\left( {3 + 2\sqrt 3 } \right)\,\]

\[R \cdot \left( {\frac{{2\sqrt 3 + 3}}{3}} \right) = 6\left( {3 + 2\sqrt 3 } \right)\]

\[R = 18{\rm{\;(cm)}}{\rm{.}}\]

Vì vậy \[AB = R = 18{\rm{\;(cm)}}{\rm{.}}\] Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( {O;R} \right)\] đường kính \[BC,\] lấy điểm \[A \in \left( O \right).\] Gọi \[H\] là trung điểm của \[AC.\] Tia \[OH\] cắt đường tròn \[\left( O \right)\] tại \[M.\] Từ \[A\] vẽ tiếp tuyến với đường tròn \[\left( O \right)\] cắt tia \[OM\] tại \[N.\] Cho các khẳng định sau:

(i) \[OH \cdot ON = {R^2}.\]

(ii) \[CN\] là tiếp tuyến của \[\left( O \right).\]

Kết luận nào sau đây là đúng nhất?

Xem đáp án » 13/11/2024 2,749

Câu 2:

Cho đường tròn \[\left( O \right)\] đường kính \[AD.\] Vẽ tiếp tuyến \[AC\] tại \[A\] của đường tròn, từ \[C\] trên tiếp tuyến đó vẽ tiếp tuyến thứ hai \[CM\] của đường tròn \[\left( O \right)\] (\[M\] là tiếp điểm và \[M\] khác \[A\]) cắt \[AD\] tại \[B.\] Giả sử \[AC = 6{\rm{\;cm}},AB = 8{\rm{\;cm}}.\] Độ dài \[BM\] bằng

Xem đáp án » 13/11/2024 2,735

Câu 3:

Một thủy thủ đang ở trên cột buồm của một con tàu, cách mặt nước biển \[10{\rm{\;m}}.\] Biết bán kính Trái Đất là khoảng \[6\,\,400{\rm{\;km}}.\] Tầm nhìn xa tối đa (làm tròn kết quả đến hàng phần nghìn của km) của thủy thủ đó bằng khoảng

Xem đáp án » 13/11/2024 782

Câu 4:

Cho đường tròn \[\left( O \right)\] và điểm \[A\] nằm trên đường tròn \[\left( O \right).\] Nếu đường thẳng \[d \bot OA\] tại \[A\] thì

Xem đáp án » 13/11/2024 463

Câu 5:

Hai tiếp tuyến tại \[A\] và \[B\] của đường tròn \[\left( O \right)\] cắt nhau tại \[I.\] Đường thẳng qua \[I\] vuông góc với \[IA\] cắt \[OB\] tại \[K.\] Khẳng định nào sau đây là đúng?

Xem đáp án » 13/11/2024 449

Câu 6:

Hai tiếp tuyến tại \[B\] và \[C\] của đường tròn \[\left( {O;R} \right)\] cắt nhau tại \[A.\] Khẳng định nào sau đây là sai?

Xem đáp án » 13/11/2024 435

Bình luận


Bình luận