Câu hỏi:
13/11/2024 112Cho đường tròn \[\left( {O;R} \right)\] và dây cung \[MN = R\sqrt 3 .\] Kẻ \[OI \bot MN\] tại \[I.\] Số đo cung nhỏ \[MN\] bằng
Quảng cáo
Trả lời:
Đáp án đúng là:
Tam giác \[OMN\] cân tại \[O\] (do \[OM = ON = R\]) có \[OI\] là đường cao nên \[OI\] cũng là đường trung tuyến. Do đó \[I\] là trung điểm \[MN.\] Vì vậy \[IN = \frac{{MN}}{2} = \frac{{R\sqrt 3 }}{2}.\]
Vì tam giác \[OIN\] vuông tại \[I\] nên \[\sin \widehat {ION} = \frac{{IN}}{{ON}} = \frac{{\frac{{R\sqrt 3 }}{2}}}{R} = \frac{{\sqrt 3 }}{2}.\] Suy ra \[\widehat {ION} = 60^\circ .\]
Tam giác \[OMN\] cân tại \[O\] (do \[OM = ON = R\]) có \[OI\] là đường cao nên \[OI\] cũng là đường phân giác của tam giác. Do đó \[\widehat {MON} = 2 \cdot \widehat {ION} = 2 \cdot 60^\circ = 120^\circ .\]
Vì vậy
Vậy ta chọn phương án C.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Xét đường tròn \(\left( O \right)\) ta có \[\widehat {ACB},\,\,\widehat {AOB}\] lần lượt là góc nội tiếp và góc ở tâm chắn cung nhỏ \[AB\].
Do đó \[\widehat {AOB} = 2\widehat {ACB} = 2 \cdot 56^\circ = 112^\circ .\] hay
Vậy số đo của cung nhỏ \[AB\] là: O10-2024-GV154
Lời giải
Đáp án đúng là: B
Vì số đo của đường tròn gấp \[5\] lần số đo cung nhỏ \[AB\] và cung cả đường tròn có số đo bằng \[360^\circ \] nên số đo cung nhỏ \[AB\] bằng \[\frac{1}{5} \cdot 360^\circ = 72^\circ .\]
Khi đó số đo cung lớn \[AB\] bằng \[360^\circ - 72^\circ = 288^\circ .\]
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.