Câu hỏi:

13/11/2024 87

Cho đường tròn \[\left( {O;R} \right)\] và dây cung \[MN = R\sqrt 3 .\] Kẻ \[OI \bot MN\] tại \[I.\] Số đo cung nhỏ \[MN\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là:

Cho đường tròn  ( O ; R )  và dây cung  M N = R √ 3 .  Kẻ  O I ⊥ M N  tại  I .  Số đo cung nhỏ  M N  bằng (ảnh 1)

Tam giác \[OMN\] cân tại \[O\] (do \[OM = ON = R\]) có \[OI\] là đường cao nên \[OI\] cũng là đường trung tuyến. Do đó \[I\] là trung điểm \[MN.\] Vì vậy \[IN = \frac{{MN}}{2} = \frac{{R\sqrt 3 }}{2}.\]

Vì tam giác \[OIN\] vuông tại \[I\] nên \[\sin \widehat {ION} = \frac{{IN}}{{ON}} = \frac{{\frac{{R\sqrt 3 }}{2}}}{R} = \frac{{\sqrt 3 }}{2}.\] Suy ra \[\widehat {ION} = 60^\circ .\]

Tam giác \[OMN\] cân tại \[O\] (do \[OM = ON = R\]) có \[OI\] là đường cao nên \[OI\] cũng là đường phân giác của tam giác. Do đó \[\widehat {MON} = 2 \cdot \widehat {ION} = 2 \cdot 60^\circ = 120^\circ .\]

Vì vậy

Vậy ta chọn phương án C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \(\left( O \right)\) đi qua ba điểm \(A,\,\,B,\,\,C\). Biết \(\widehat {ACB} = 56^\circ ,\) số đo của cung nhỏ \(AB\) là

Xem đáp án » 13/11/2024 1,418

Câu 2:

III. Vận dụng

Cho hình vẽ bên.

Cho hình vẽ bên. Số đo cung lớn  A B  trong hình ngôi sao năm cánh đã cho bằng (ảnh 1)Cho hình vẽ bên. Số đo cung lớn  A B  trong hình ngôi sao năm cánh đã cho bằng (ảnh 2)

Số đo cung lớn \[AB\] trong hình ngôi sao năm cánh đã cho bằng

Xem đáp án » 13/11/2024 346

Câu 3:

Cho tam giác \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( {O;{\rm{ }}R} \right)\], đường cao \[AH\], biết \[AB = 12{\rm{ cm}}\], \[AC = 15\,\,{\rm{cm}}\], \[AH = 6\,\,{\rm{cm}}\]. Đường kính của đường tròn \[\left( O \right)\] bằng

Xem đáp án » 13/11/2024 240

Câu 4:

Cho tam giác nhọn \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\] và gọi\[M\] là trung điểm \[BC\]. Cho các khẳng định sau:

(i) \(OM \bot BC\).

(ii) \(OM\,{\rm{//}}\,AH\).

(iii) \(HM = \frac{{HF}}{2}\).

Có bao nhiêu khẳng định đúng trong các khẳng định trên?

Xem đáp án » 13/11/2024 236

Câu 5:

Cho tam giác nhọn \[ABC\] có 3 đỉnh nằm trên đường tròn \[\left( O \right)\], đường kính \[BD\] . Biết \(\widehat {BAC} = 45^\circ \). Số đo của góc \[\widehat {CBD}\] là

Xem đáp án » 13/11/2024 208

Câu 6:

II. Thông hiểu

Cho đường tròn \(\left( O \right)\) đi qua hai điểm \(A,\,\,B\). Biết \(\widehat {AOB} = 100^\circ \) thì số đo của cung lớn \(AB\) là

Xem đáp án » 13/11/2024 191

Câu 7:

Trong một đường tròn, số đo cung lớn bằng

Xem đáp án » 13/11/2024 189
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua