Câu hỏi:

13/11/2024 324 Lưu

Tam giác \[ABC\] có 3 đỉnh nằm trên đường tròn \[\left( O \right)\] có \[AB = 5\,\,{\rm{cm}}\]; \[AC = 3\,\,{\rm{cm}}\]. Vẽ đường cao \[AH\] và đường kính \[AD\]. Khi đó tích \[AH.{\rm{ }}AD\] bằng

A. \(15\,\,{\rm{c}}{{\rm{m}}^2}\).

B. \(8\,\,{\rm{c}}{{\rm{m}}^2}\).

C. \(12\,\,{\rm{c}}{{\rm{m}}^2}\).

D. \(30\,\,{\rm{c}}{{\rm{m}}^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Tam giác  A B C  có 3 đỉnh nằm trên đường tròn  ( O )  có  A B = 5 c m ;  A C = 3 c m . Vẽ đường cao  A H  và đường kính  A D . Khi đó tích  A H . A D  bằng (ảnh 1)

Xét \[\left( O \right)\] có \(\widehat {ACB} = \widehat {ADB}\) (hai góc nội tiếp cùng chắn cung \[AB\]); \[\;\widehat {ADB} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn).

Nên ∆\[ACH\]ᔕ ∆\[ADB\] (g.g), do đó \(\frac{{AC}}{{AD}} = \frac{{AH}}{{AB}}\) hay \[AH.{\rm{ }}AD = AC.{\rm{ }}AB\].

Suy ra \[AH.{\rm{ }}AD = 3.5 = 15\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right).\]

Vậy \[AH.{\rm{ }}AD = 3 \cdot 5 = 15\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho tam giác  A B C  nhọn có  ˆ B A C = 60 ∘ . Vẽ đường tròn đường kính  B C  tâm  O  cắt  A B ,  A C  lần lượt tại  D  và  E . Số đo góc  ˆ O D E  là (ảnh 1)

Góc \[BDC\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {BDC} = 90^\circ \).

Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BDC} = 180^\circ - 90^\circ = 90^\circ \) hay tam giác \[ADC\] vuông tại \[D\].

Suy ra \(\widehat {ACD} = 90^\circ - \widehat {CAD} = 90^\circ - 60^\circ = 30^\circ \).

Vì \[\widehat {EOD}\] và \[\widehat {ECD}\] là góc ở tâm và góc nội tiếp cùng chắn cung \[ED\] của \[\left( O \right)\] nên:

\(\widehat {EOD} = 2\widehat {ECD} = 2 \cdot 30^\circ = 60^\circ \).

Mà tam giác \[EOD\] cân tại \[O\], suy ra tam giác \[EOD\] là tam giác đều.

Vậy \(\widehat {EDO} = 60^\circ \).

Lời giải

Đáp án đúng là:

Cho tam giác  A B C  nhọn có ba đỉnh nằm trên đường tròn  ( O ) . Hai đường cao  B D  và  C E  cắt nhau tại  H . Vẽ đường kính  A F . Khẳng định nào sau đây là đúng? (ảnh 1)

Xét \[\left( O \right)\] có \[\widehat {ACF} = 90^\circ \,;\,\,\widehat {ABF} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn).

Suy ra \[CF \bot \;AC\]; \[BF \bot \;AB\] mà \[BD \bot \;AC\]; \[CE \bot \;AB\], do đó \[BD\,{\rm{//}}\,CF\]; \[CE\,{\rm{//}}\,BF\].

Suy ra \[BHCF\] là hình bình hành hay \[BH = CF\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hình 1.

B. Hình 2.

C. Hình 3.

D. Hình 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP