Câu hỏi:
13/11/2024 18Cho nửa đường tròn \[\left( {O;{\rm{ }}R} \right)\] đường kính \[BC\]. Lấy điểm \[A\] trên tia đối của tia \[CB\]. Kẻ tiếp tuyến \[AF,{\rm{ }}Bx\] của nửa kia đường tròn \[\left( O \right)\] (với \[F\] là tiếp điểm). Tia \[AF\] cắt tia \[Bx\] của nửa đường tròn tại \[D\]. Khi đó tứ giác \[OBDF\] là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có \(\widehat {DBO} = 90^\circ \) và \[\widehat {DFO} = 90^\circ \] (tính chất tiếp tuyến)
Tứ giác \[OBDF\] có \(\widehat {DBO} + \widehat {DFO} = 90^\circ + 90^\circ = 180^\circ \).
Vậy tứ giác \[OBDF\] là tứ giác nội tiếp.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác \[ABC\] vuông tại \[A\] đường cao \[AH\]. Kẻ \[HE\] vuông góc với \[AB\] tại \[E\], kẻ \[HF\] vuông góc với \[AC\] tại \[F\]. Chọn câu đúng:
Câu 2:
I. Nhận biết
Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\]. Khẳng định nào sau đây là sai?
Câu 4:
Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại K. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tích \[AH.{\rm{ }}AB\] bằng
Câu 5:
Cho điểm \[A\] nằm ngoài đường tròn \[\left( O \right)\] qua \[A\] kẻ hai tiếp tuyến \[AB\] và \[AC\] với đường tròn (\[B,{\rm{ }}C\] là tiếp điểm). Chọn đáp án đúng:
Câu 6:
Cho hình bình hành \[ABCD\]. Đường tròn đi qua ba đỉnh \[A,{\rm{ }}B,{\rm{ }}C\] cắt đường thẳng \[CD\] tại \[P\] (điểm \[P\] khác với điểm \[C\]). Khi đó
Câu 7:
Cho tam giác \[ABC\] có hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Trong các tứ giác sau, tứ giác nội tiếp là
về câu hỏi!