Câu hỏi:

13/11/2024 15

Cho nửa đường tròn tâm \[O\], đường kính \[AB = 2R\]. Trên tia đối của tia \[AB\] lấy điểm \[E\] (khác với điểm \[A\]). Tiếp tuyến kẻ từ điểm \[E\] cắt các tiếp tuyến kẻ từ điểm \[A\] và \[B\] của nửa đường tròn \[\left( O \right)\] lần lượt tại \[C\] và \[D\]. Gọi \[M\] là tiếp điểm của tiếp tuyến kẻ từ điểm \[E\]. Trong các khẳng định sau, khẳng định nào là sai?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho nửa đường tròn tâm  O , đường kính  A B = 2 R . Trên tia đối của tia  A B  lấy điểm  E  (khác với điểm  A ). Tiếp tuyến kẻ từ điểm  E  cắt các tiếp tuyến kẻ từ điểm  A  và  B  của nửa đường tròn  ( O )  lần lượt tại  C  và  D . Gọi  M  là tiếp điểm của tiếp tuyến kẻ từ điểm  E . Trong các khẳng định sau, khẳng định nào là sai? (ảnh 1)

Vì \[AC\] là tiếp tuyến của \[\left( O \right)\] nên \(OA \bot AC\) hay \(\widehat {OAC} = 90^\circ \).

Vì \[MC\] là tiếp tuyến của \[\left( O \right)\] nên \(OM \bot MC\) hay \(\widehat {OMC} = 90^\circ \).

Suy ra \(\widehat {OAC} + \widehat {OMC} = 180^\circ \). Do đó \[OACM\] là tứ giác nội tiếp.

Vì \[BD\] là tiếp tuyến của \[\left( O \right)\] nên \(OB \bot BD\) hay \(\widehat {OBD} = 90^\circ \)

Vì \[MD\] là tiếp tuyến của \[\left( O \right)\] nên \(OM \bot MD\) hay \(\widehat {OMD} = 90^\circ \)

Suy ra \(\widehat {OBD} + \widehat {OMD} = 180^\circ \). Do đó \[OMDB\] là tứ giác nội tiếp.

Vậy đáp án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác \[ABC\] vuông tại \[A\] đường cao \[AH\]. Kẻ \[HE\] vuông góc với \[AB\] tại \[E\], kẻ \[HF\] vuông góc với \[AC\] tại \[F\]. Chọn câu đúng:

Xem đáp án » 13/11/2024 67

Câu 2:

I. Nhận biết

Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\]. Khẳng định nào sau đây là sai?

Cho tứ giác  A B C D  nội tiếp đường tròn  ( O ) . Khẳng định nào sau đây là sai? (ảnh 1)

Xem đáp án » 13/11/2024 33

Câu 3:

Cho hình vẽ dưới đây:

Cho hình vẽ dưới đây:Số đo góc \[ABC\] là (ảnh 1)

Số đo góc \[ABC\] là

Xem đáp án » 13/11/2024 31

Câu 4:

Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại K. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tích \[AH.{\rm{ }}AB\] bằng

Xem đáp án » 13/11/2024 31

Câu 5:

Cho điểm \[A\] nằm ngoài đường tròn \[\left( O \right)\] qua \[A\] kẻ hai tiếp tuyến \[AB\] và \[AC\] với đường tròn (\[B,{\rm{ }}C\] là tiếp điểm). Chọn đáp án đúng:

Xem đáp án » 13/11/2024 28

Câu 6:

Cho tam giác \[ABC\] có hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Trong các tứ giác sau, tứ giác nội tiếp là

Xem đáp án » 13/11/2024 26

Câu 7:

III. Vận dụng

Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại \[K\]. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tam giác \[ACF\] là tam giác

Xem đáp án » 13/11/2024 25

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store