Câu hỏi:
13/11/2024 25Cho hình bình hành \[ABCD\]. Đường tròn đi qua ba đỉnh \[A,{\rm{ }}B,{\rm{ }}C\] cắt đường thẳng \[CD\] tại \[P\] (điểm \[P\] khác với điểm \[C\]). Khi đó
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Do tứ giác \[ABCP\] nội tiếp (vì có 4 đỉnh cùng thuộc đường tròn) và \(\widehat {BAP},\,\,\widehat {BCP}\) là các góc đối nên \(\widehat {BAP} + \widehat {BCP} = 180^\circ & \left( 1 \right)\).
Do \[ABCD\] là hình bình hành nên \[CD\,{\rm{//}}\,AB\], suy ra \(\widehat {ABC} + \widehat {BCP} = 180^\circ & \left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(\widehat {BAP} = \widehat {ABC}\).
Mặt khác \[CP\,{\rm{//}}\,AB\] nên \[ABCP\] là hình thang cân. Đáp án A đúng.
Từ đó suy ra \[AP = BC & \left( 3 \right)\]. (Đáp án C đúng)
Do \[BC = AD\] (vì \[ABCD\] là hình bình hành). \[\left( 4 \right)\]
Từ \[\left( 3 \right)\] và \[\left( 4 \right)\] ta suy ra \[AP = AD\].
Đáp án B đúng.
Vậy cả ba đáp án A, B, C đều đúng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác \[ABC\] vuông tại \[A\] đường cao \[AH\]. Kẻ \[HE\] vuông góc với \[AB\] tại \[E\], kẻ \[HF\] vuông góc với \[AC\] tại \[F\]. Chọn câu đúng:
Câu 2:
I. Nhận biết
Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\]. Khẳng định nào sau đây là sai?
Câu 4:
Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại K. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tích \[AH.{\rm{ }}AB\] bằng
Câu 5:
Cho điểm \[A\] nằm ngoài đường tròn \[\left( O \right)\] qua \[A\] kẻ hai tiếp tuyến \[AB\] và \[AC\] với đường tròn (\[B,{\rm{ }}C\] là tiếp điểm). Chọn đáp án đúng:
Câu 6:
Cho tam giác \[ABC\] có hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Trong các tứ giác sau, tứ giác nội tiếp là
Câu 7:
III. Vận dụng
Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại \[K\]. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tam giác \[ACF\] là tam giác
về câu hỏi!