Câu hỏi:

13/11/2024 97

Cho hình bình hành \[ABCD\]. Đường tròn đi qua ba đỉnh \[A,{\rm{ }}B,{\rm{ }}C\] cắt đường thẳng \[CD\] tại \[P\] (điểm \[P\] khác với điểm \[C\]). Khi đó

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho hình bình hành  A B C D . Đường tròn đi qua ba đỉnh  A , B , C  cắt đường thẳng  C D  tại  P  (điểm  P  khác với điểm  C ). Khi đó (ảnh 1)

Do tứ giác \[ABCP\] nội tiếp (vì có 4 đỉnh cùng thuộc đường tròn) và \(\widehat {BAP},\,\,\widehat {BCP}\) là các góc đối nên \(\widehat {BAP} + \widehat {BCP} = 180^\circ & \left( 1 \right)\).

Do \[ABCD\] là hình bình hành nên \[CD\,{\rm{//}}\,AB\], suy ra \(\widehat {ABC} + \widehat {BCP} = 180^\circ & \left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(\widehat {BAP} = \widehat {ABC}\).

Mặt khác \[CP\,{\rm{//}}\,AB\] nên \[ABCP\] là hình thang cân. Đáp án A đúng.

Từ đó suy ra \[AP = BC & \left( 3 \right)\]. (Đáp án C đúng)

Do \[BC = AD\] (vì \[ABCD\] là hình bình hành). \[\left( 4 \right)\]

Từ \[\left( 3 \right)\] và \[\left( 4 \right)\] ta suy ra \[AP = AD\].

Đáp án B đúng.

Vậy cả ba đáp án A, B, C đều đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho đường tròn  ( O )  có  A B  là đường kính. Trên tia đối của tia  A B  lấy điểm  C  nằm ngoài đường tròn. Lấy điểm  M  bất kì nằm trên đường tròn  ( O ) . Gọi  P  là giao điểm của  M B  và đường vuông góc với  A B  tại  C . Chọn khẳng định đúng. (ảnh 1)

Ta có \(\widehat {AMB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)

Lại có: \(BC \bot CP\) hay \(\widehat {BCP} = 90^\circ \).

Suy ra \(\widehat {AMB} + \widehat {BCP} = 180^\circ \).

Nên \[\widehat {PMA} + \widehat {PCA} = 180^\circ \].

Do đó tứ giác \[PMAC\] là tứ giác nội tiếp.

Câu 2

Cho hình vẽ dưới đây:

Cho hình vẽ dưới đây:Số đo góc \[ABC\] là (ảnh 1)

Số đo góc \[ABC\] là

Lời giải

Đáp án đúng là: C

Ta có \(\widehat {BCE} = \widehat {DCF}\) (hai góc đối đỉnh)

Đặt \(\widehat {BCE} = \widehat {DCF} = x\).

Theo tính chất góc ngoài tam giác, ta có:

\(\widehat {ABC} = \widehat {BCE} + \widehat E = x + 40^\circ \)

\(\widehat {ADC} = \widehat {DCF} + \widehat F = x + 20^\circ \)

Lại có \(\widehat {ABC} + \widehat {ADC} = 180^\circ \) (hai góc đối diện của tứ giác nội tiếp)

Suy ra \(\left( {x + 40^\circ } \right) + \left( {x + 20^\circ } \right) = 180^\circ \) hay \(x = 60^\circ \).

Do đó \(\widehat {ABC} = 60^\circ + 40^\circ = 100^\circ \).

Câu 3

Cho điểm \[A\] nằm ngoài đường tròn \[\left( O \right)\] qua \[A\] kẻ hai tiếp tuyến \[AB\] và \[AC\] với đường tròn (\[B,{\rm{ }}C\] là tiếp điểm). Chọn đáp án đúng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho tam giác \[ABC\] vuông tại \[A\] đường cao \[AH\]. Kẻ \[HE\] vuông góc với \[AB\] tại \[E\], kẻ \[HF\] vuông góc với \[AC\] tại \[F\]. Chọn câu đúng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

I. Nhận biết

Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\]. Khẳng định nào sau đây là sai?

Cho tứ giác  A B C D  nội tiếp đường tròn  ( O ) . Khẳng định nào sau đây là sai? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay