Câu hỏi:
14/11/2024 138Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là
Quảng cáo
Trả lời:
Đáp án đúng là: B
Tứ giác \[ABCD\] nội tiếp nên ta có:
\(\widehat {DAB} + \widehat {BCD} = 180^\circ \) nên \(\widehat {BCD} = 180^\circ - 70^\circ = 110^\circ \).
Mà \(\widehat {BCD} + \widehat {BCM} = 180^\circ \) (hai góc kề bù)
Do đó \(\widehat {BCM} = 180^\circ - 110^\circ = 70^\circ \).
Vậy \(\widehat {BCM} = 70^\circ \).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi \[ABCD\] là khung cổng hình chữ nhật.
Vẽ hình chữ nhật \[ABEF\] (hình vẽ) và \[O\] là giao điểm của hai đường chéo \[AE,{\rm{ }}BF.\]
Khi đó ta có \[AF = 2AD = 2 \cdot 3 = 6{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\]
Tam giác \[ABF\] vuông tại A, theo định lí Pythagore, ta có:
\[B{F^2} = A{F^2} + A{B^2} = {6^2} + {4^2} = 52.\]
Do đó \[BF = \sqrt {52} = 2\sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]
Vì vậy bán kính đường tròn ngoại tiếp hình chữ nhật \[ABEF\] là: \[R = \frac{{BF}}{2} = \sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]
Chu vi đường tròn ngoại tiếp hình chữ nhật \[ABEF\] là: \[C = 2\pi R = 2\pi \sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]
Vậy chiều dài của đoạn thép dùng để làm khung nửa đường tròn là \[\frac{C}{2} = \frac{{2\pi \sqrt {13} }}{2} \approx 11,33\,\,\left( {{\rm{cm}}} \right).\]
Lời giải
Đáp án đúng là: C
Tứ giác \[ABCD\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có: \[\widehat {ADC} + \widehat {ABC} = 180^\circ \] (tổng hai góc đối của tứ giác nội tiếp).
Suy ra \[\widehat {ADC} = 180^\circ - \widehat {ABC} = 180^\circ - 70^\circ = 110^\circ .\]
Ta có \[\widehat {ADO} + \widehat {ODC} = \widehat {ADC}\,.\]
Suy ra \[\widehat {ADO} = \widehat {ADC} - \widehat {ODC} = 110^\circ - 50^\circ = 60^\circ .\]
Tam giác \[OAD\] cân tại \[O\] (do \[OA = OD = R\]) có \[\widehat {ADO} = 60^\circ \] nên \[\Delta OAD\] là tam giác đều. Do đó \[\widehat {AOD}\, = 60^\circ .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.