Câu hỏi:

14/11/2024 321

Phép quay giữ nguyên hình đa giác đều \[{A_1}{A_2}{A_3}...{A_n}\,\,\left( {n \ge 3,{\rm{ }}n \in \mathbb{N}} \right)\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Giả sử hình đa giác đều \[{A_1}{A_2}{A_3}...{A_n}\,\,\left( {n \ge 3,{\rm{ }}n \in \mathbb{N}} \right)\] có tâm \[O.\]

Phép quay giữ nguyên hình đa giác đều \[{A_1}{A_2}{A_3}...{A_n}\] là phép quay tâm \[O\] biến mỗi đỉnh của hình đa giác đều thành một đỉnh của hình đa giác đều đó.

Do đó phép quay giữ nguyên hình đa giác đều \[{A_1}{A_2}{A_3}...{A_n}\,\,\left( {n \ge 3,{\rm{ }}n \in \mathbb{N}} \right)\] là phép quay có tâm là tâm của hình đa giác đều biến mỗi đỉnh của hình đa giác đều thành một đỉnh của hình đa giác đều đó.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

Cho hình vuông  A B C D  tâm  O .  Phép quay ngược chiều 180° tâm O biến các điểm  A , B , C , D  thành các điểm nào? (ảnh 1)

Phép quay ngược chiều 180° tâm O biến các điểm \[A,\,\,B,\,\,C,\,\,D\] theo thứ tự thành các điểm \[C,{\rm{ }}D,{\rm{ }}A,{\rm{ }}B.\]

Câu 2

Lời giải

Đáp án đúng là: B

a) Đa giác đều đã cho có 9 cạnh nên đa giác đều này có 9 đỉnh.

Chín đỉnh của đa giác đều đã cho chia đường tròn \[\left( O \right)\] thành chín cung bằng nhau, mỗi cung có số đo bằng \[\frac{{360^\circ }}{9} = 40^\circ .\]

Tức là, \[\widehat {AOB} = \widehat {BOC} = 40^\circ .\]

Vì \[OA = OB\] nên tam giác \[AOB\] cân tại \[O.\] Suy ra \[\widehat {OAB} = \widehat {ABO}\,.\]

Tam giác \[AOB\] có: \[\widehat {AOB} + \widehat {OAB} + \widehat {ABO} = 180^\circ \] (tổng ba góc của một tam giác)

Suy ra \[2\widehat {ABO} = 180^\circ - \widehat {AOB} = 180^\circ - 40^\circ = 140^\circ .\]

Do đó \[\widehat {OAB} = \widehat {ABO} = \frac{{140^\circ }}{2} = 70^\circ .\]

Thực hiện tương tự, ta được \[\widehat {OBC} = \widehat {OCB} = 70^\circ .\]

Ta có \[\widehat {ABC} = \widehat {ABO} + \widehat {OBC} = 70^\circ + 70^\circ = 140^\circ .\]

Vậy \[\widehat {AOB} = 40^\circ ;\,\,\widehat {ABO} = 70^\circ ;\,\,\widehat {ABC} = 140^\circ .\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP