Câu hỏi:

14/11/2024 43

III. Vận dụng

Khoảng cách giữa hai điểm \(M\left( {{x_1};\,\,{y_1}} \right)\) và \(N\left( {{x_2};\,\,{y_2}} \right)\) được tính công thức:

\(MN = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} .\)

Áp dụng: Cho parabol \(\left( P \right):\,\,y = \frac{1}{2}{x^2}\) cắt đường thẳng \(\left( d \right):\,\,y = x + \frac{3}{2}\) tại hai điểm phân biệt \(A\) và \(B.\) Độ dài đoạn thẳng \(AB\) bằng

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Hoành độ giao điểm của parabol \(\left( P \right):\,\,y = \frac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\,\,y = x + \frac{3}{2}\) là nghiệm của phương trình \(\frac{1}{2}{x^2} = x + \frac{3}{2}\)

\({x^2} = 2x + 3\)

\({x^2} - 2x - 3 = 0\)

\({x^2} - 3x + x - 3 = 0\)

\(x\left( {x - 3} \right) + \left( {x - 3} \right) = 0\)

\(\left( {x - 3} \right)\left( {x + 1} \right) = 0\)

\(x - 3 = 0\) hoặc \(x + 1 = 0\)

\(x = 3\) hoặc \(x = - 1.\)

Với \(x = - 1\) thì \(y = - 1 + \frac{3}{2} = \frac{1}{2}\) nên \(A\left( { - 1;\frac{1}{2}} \right).\)

Với \(x = 3\) thì \(y = 3 + \frac{3}{2} = \frac{9}{2}\) nên \[B\left( {3\,\,;\,\frac{9}{{\,2}}} \right).\]

Do đó, độ dài đoạn thẳng \(AB = \sqrt {{{\left( { - 1 - 3} \right)}^2} + {{\left( {\frac{1}{2} - \frac{9}{2}} \right)}^2}} = 4\sqrt 2 .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đồ thị của hình bên dưới là đồ thị của hàm số nào trong các hàm số sau?

Xem đáp án » 14/11/2024 297

Câu 2:

Điểm nào sau đây thuộc đồ thị hàm số \(y = 3{x^2}\,?\)

Xem đáp án » 14/11/2024 182

Câu 3:

Hàm số \(y = \left( {m + 2} \right){x^2}\) đạt giá trị nhỏ nhất khi

Xem đáp án » 14/11/2024 125

Câu 4:

Cho hàm số \(y = {x^2}\) có đồ thị là \(\left( P \right).\) Đường thẳng đi qua hai điểm thuộc \(\left( P \right)\) có hoành độ bằng \( - 1\) và \(2\) là

Xem đáp án » 14/11/2024 100

Câu 5:

I. Nhận biết

Hàm số \(y = a{x^2}\,\,\left( {a \ne 0} \right)\) xác định với

Xem đáp án » 14/11/2024 70

Câu 6:

Cho hàm số \(y = - 2{x^2}\) có đồ thị là \(\left( P \right).\) Tọa độ các điểm thuộc \(\left( P \right)\) có tung độ bằng \( - 6\) là

Xem đáp án » 14/11/2024 66

Câu 7:

II. Thông hiểu

Trong mặt phẳng tọa độ \[Oxy\], cho hàm số \(y = \left( {m + 2} \right){x^2}\) có đồ thị đi qua điểm \(\left( { - 1\,;\,\,3} \right).\) Khi đó giá trị của \[m\] tương ứng là

Xem đáp án » 14/11/2024 62

Bình luận


Bình luận