Câu hỏi:
16/11/2024 10Cho hình trụ có bán kính đáy \[r = 8{\rm{\;cm}}\] và diện tích toàn phần \[564\pi {\rm{\;c}}{{\rm{m}}^2}.\] Chiều cao của hình trụ bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Gọi chiều cao của hình trụ là \(h{\rm{\;(cm)}}{\rm{.}}\)
Công thức tính diện tích toàn phần của hình trụ là \[{S_{tp}} = 2\pi r\left( {h + r} \right)\]
Suy ra: \[2\pi \cdot 8\left( {h + 8} \right) = 564\pi \]
Nên \[h + 8 = 35,25\]
Do đó \[h = 27,25{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chữ nhật có chiều dài \[10{\rm{\;cm}},\] chiều rộng \[7{\rm{\;cm}}.\] Quay hình chữ nhật đó một vòng quanh chiều dài của nó ta được một hình trụ có thể tích bằng
Câu 2:
III. Vận dụng
Một hộp sữa ông Thọ có dạng hình trụ (đã bỏ nắp) có chiều cao \[h = 12{\rm{\;cm}}\] và đường kính đáy \[d = 8{\rm{\;cm}}.\] Diện tích toàn phần của hộp sữa là
Câu 3:
Cho hình trụ có chiều cao \[h = 12{\rm{\;cm}}\] và diện tích xung quanh \[{S_{xq}} = 64\pi {\rm{\;c}}{{\rm{m}}^2}.\] Bán kính đáy của hình trụ là
Câu 4:
Gọi \[l,h,r\] lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ \[\left( T \right).\] Diện tích xung quanh \[{S_{xq}}\] của hình trụ \[\left( T \right)\] có công thức là
Câu 5:
Một hình trụ \[\left( T \right)\] được tạo ra khi quay hình chữ nhật \[ABCD\] một vòng quanh cạnh \[AB.\] Biết \[AC = 2a\sqrt 2 \] và \[\widehat {ACB} = 45^\circ .\] Thể tích \[V\] của hình trụ \[\left( T \right)\] là
Câu 6:
Một ống nước có dạng hình trụ (như hình vẽ).
Kết luận nào sau đây là đúng?
về câu hỏi!