Trong không gian tọa độ \(Oxyz\), cho điểm \(A\left( {1;0; - 2} \right)\), \(B\left( {1; - 1;0} \right)\). Tìm toạ độ điểm \(C\)nằm trên trục \(Oz\) sao cho \(AB \bot BC\)?
Quảng cáo
Trả lời:

Đáp án đúng là: C
Gọi \(C\left( {0;0;c} \right) \in Oz\).
Ta có: \(\overrightarrow {AB} = \left( {0; - 1;2} \right)\), \(\overrightarrow {BC} = \left( { - 1;1;c} \right)\).
Để \(AB \bot BC\)\( \Rightarrow \overrightarrow {AB} .\overrightarrow {BC} = 0 \Leftrightarrow - 1 + 2c = 0 \Rightarrow c = \frac{1}{2}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) S, d) S
a) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\).
b) Ta có \(g'\left( x \right) = 2 - 3f'\left( x \right) > 0,\forall x \in \left( {0;2} \right)\), suy ra hàm số \(g\left( x \right) = 2x - 3f\left( x \right)\) đồng biến trên khoảng \(\left( {0;2} \right)\).
c) Ta có hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( {0;2} \right)\).
Mà \(0 \le {\sin ^2}x \le 1,\forall x \in \mathbb{R}\)\( \Rightarrow 0 \le {\sin ^2}x < \frac{3}{2},\forall x \in \mathbb{R}\) \( \Rightarrow f\left( {{{\sin }^2}x} \right) > f\left( {\frac{3}{2}} \right)\).
d) Ta có \(y' = {\left( {2 - 3x} \right)^\prime } \cdot f'\left( {2 - 3x} \right) = - 3f'\left( {2 - 3x} \right)\).
Hàm số \(y = f\left( {2 - 3x} \right)\) nghịch biến \(y' = - 3f'\left( {2 - 3x} \right) < 0 \Leftrightarrow f'\left( {2 - 3x} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}2 - 3x < 0\\2 - 3x > 2\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x > \frac{2}{3}\\x < 0\end{array} \right.\). Suy ra hàm số \(y = f\left( {2 - 3x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {\frac{2}{3}; + \infty } \right)\).
Lời giải
Ta có \(M \in \left( C \right)\) \( \Rightarrow M\left( {{x_0};{x_0} + \frac{1}{{{x_0} + 1}}} \right)\) với \({x_0} > - 1\).
Ta có \(I{M^2} = {\left( {{x_0} + 1} \right)^2} + {\left( {{x_0} + 1 + \frac{1}{{{x_0} + 1}}} \right)^2} = 2{\left( {{x_0} + 1} \right)^2} + \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}} + 2\).
Đặt \(t = {\left( {{x_0} + 1} \right)^2},t > 0\) thì khi đó \(I{M^2} = 2t + 2 + \frac{1}{t}\).
Xét hàm số \(y = 2t + 2 + \frac{1}{t}\) có \(y' = 2 - \frac{1}{{{t^2}}} = 0 \Leftrightarrow t = \frac{1}{{\sqrt 2 }}\).
Bảng biến thiên

Để thuyền thu được sóng tốt nhất \( \Leftrightarrow IM\) ngắn nhất \( \Leftrightarrow {x_0} = \frac{1}{{\sqrt[4]{2}}} - 1\).
Vậy \(n = 4;a = 2;b = 1 \Rightarrow a \cdot n + b = 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.