Câu hỏi:

12/12/2024 176

Ý nghĩa độ lệch chuẩn của mẫu số liệu ghép nhóm

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ý nghĩa độ lệch chuẩn của mẫu số liệu ghép nhóm: Độ lệch chuẩn của mẫu số liệu ghép nhóm xấp xỉ cho độ lệch chuẩn của mẫu số liệu gốc. Độ lệch chuẩn được dùng để đo mức độ phân tán của mẫu số liệu ghép nhóm xung quanh số trung bình của mẫu số liệu đó. Độ lệch chuẩn càng lớn thì mẫu số liệu càng phân tán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Những căn lều gỗ trong Hình 1 được phác thảo dưới dạng một hình lăng trụ đứng tam giác \(OAB.O'A'B'\) như trong Hình 2. Với hệ trục toạ độ \[Oxyz\] thể hiện như Hình 2 (đơn vị đo lấy theo centimét), hai điểm \(A'\)\(B'\) có tọa độ lần lượt là \(\left( {240;450;0} \right)\)\(\left( {120;450;300} \right)\). Mỗi căn nhà gỗ có chiều dài là \(a{\rm{ cm}}\), chiều rộng là \(b\;{\rm{cm}}\), mỗi cạnh bên của mặt tiền có độ dài là \(c\;{\rm{cm}}\). Tính \(a + b + c\) (Làm tròn đến hàng đơn vị).

Những căn lều gỗ trong Hình 1 được phác thảo dưới dạng một hình lăng trụ đứng tam giác \(OAB.O'A'B) (ảnh 1)

Xem đáp án » 12/12/2024 8,356

Câu 2:

Xí nghiệp \(A\) sản xuất độc quyền một loại sản phẩm. Biết rằng hàm tổng chi phí sản xuất là \(TC = {x^3} - 77{x^2} + 1000x + 4000\) và hàm doanh thu là \(TR = - 2{x^2} + 1312x\), với \(x\) là số sản phẩm. Lợi nhuận của xí nghiệp \(A\) được xác định bằng hàm số \(f\left( x \right) = TR - TC\), cực đại lợi nhuận của xí nghiệp \(A\) khi đó đạt bao nhiêu sản phẩm?

Xem đáp án » 12/12/2024 3,076

Câu 3:

Trong không gian \(Oxyz\), cho tam giác \(ABC\) với \(A\left( {1;2;5} \right),B\left( {2;4; - 3} \right),C\left( {3;3;1} \right)\). Gọi \(G\) là trọng tâm của tam giác \(ABC\)\(M\) là điểm thay đổi trên mặt phẳng \(\left( {Oxy} \right)\). Độ dài \(GM\) ngắn nhất bằng bao nhiêu?

Xem đáp án » 12/12/2024 2,340

Câu 4:

Giả sử sự lây lan của một loại virus ở một địa phương có thể được mô hình hóa bằng hàm số \(N\left( t \right) = - {t^3} + 12{t^2},0 \le t \le 12\), trong đó \(N\) là số người bị nhiễm bệnh (tính bằng trăm người) và \(t\) là thời gian (tuần). Giả sử số người bị nhiễm bệnh tăng trong khoảng thời gian \(\left( {a;b} \right)\). Tính \(a + b\).

Xem đáp án » 12/12/2024 1,815

Câu 5:

Trong không gian với hệ trục tọa độ \(Oxyz\), cho \(\overrightarrow {OA} = 3\overrightarrow i - \overrightarrow k \) với \(\overrightarrow i ,\overrightarrow k \) là hai vectơ đơn vị trên hai trục tọa độ \(Ox,Oz\), hai điểm \(B\left( { - 1;2;3} \right),C\left( {1;4;1} \right)\).

a) \(A\left( {3;0; - 1} \right)\).

b) Ba điểm \(A,B,C\) thẳng hàng.

c) Điểm \(D\left( {a;b;c} \right)\) là điểm đối xứng với \(A\) qua \(B\). Khi đó \(a + b + c = 6\).

d) Điểm \(M\left( {m;n;p} \right)\) trên mặt phẳng \(\left( {Oxy} \right)\) sao cho \(M{A^2} + M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất. Khi đó \(2m - n + 2024p = 0\).

Xem đáp án » 12/12/2024 1,451

Câu 6:

Thống kê chiều cao của tổ 1 và tổ 2 của lớp 10A cho bởi bảng sau:

Chiều cao (cm)

\(\left[ {150;155} \right)\)

\(\left[ {155;160} \right)\)

\(\left[ {160;165} \right)\)

\(\left[ {165;170} \right)\)

\(\left[ {170;175} \right)\)

\(\left[ {175;180} \right)\)

Số học sinh tổ 1

3

2

2

1

3

0

Số học sinh tổ 2

1

3

3

2

1

1

    a) Tứ phân vị thứ nhất của mẫu số liệu về chiều cao của học sinh tổ 1 là \({Q_1} = 154,375\).

    b) Khoảng biến thiên của mẫu số liệu về chiều cao của học sinh tổ 1 là \(R = 25\).

    c) Phương sai của mẫu số liệu về chiều cao của học sinh tổ 2 là \(s_2^2 \approx 48,88\).

    d) Độ lệch chuẩn của mẫu số liệu về chiều cao của học sinh tổ 2 lớn hơn độ lệch chuẩn của mẫu số liệu về chiều cao của học sinh tổ 1.

Xem đáp án » 12/12/2024 694

Câu 7:

Cho hàm số \(y = f(x) = {x^3} - 3x - 2\).

a) Hàm số đồng biến trên khoảng \(\left( { - 1;1} \right)\).

b) Hàm số đạt cực tiểu tại \(x = 1\).

c) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 1;1} \right]\) bằng \( - 4\).

d) Giá trị nhỏ nhất của hàm số \(y = f(2x)\) trên đoạn \(\left[ { - \frac{1}{2};\frac{1}{2}} \right]\) bằng \( - 4\).

Xem đáp án » 12/12/2024 574

Bình luận


Bình luận