Câu hỏi:

12/12/2024 336 Lưu

Một trang báo điện tử thống kê thời gian người sử dụng đọc thông tin trên trang trong mỗi lần truy cập ở bảng sau:

Thời gian đọc (phút)

[0; 2)

[2; 4)

[4; 6)

[6; 8)

[8; 10)

Số lượt truy cập

45

34

23

18

5

Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cỡ mẫu là \(n = 45 + 34 + 23 + 18 + 5 = 125\).

Gọi \({x_1},...\,,\,{x_{125}}\) là thời gian đọc thông tin trên trang báo điện tử của 125 lượt truy cập và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{31}} + {x_{32}}} \right)\) nên nhóm chứa tứ phân vị thứ nhất là nhóm [0; 2) và ta có:

\({Q_1} = 0 + \left[ {\frac{{\frac{{1 \cdot 125}}{4} - 0}}{{45}}} \right] \cdot (2 - 0) \approx 1,39\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{94}} + {x_{95}}} \right)\) nên nhóm chứa tứ phân vị thứ nhất là nhóm [4; 6) và ta có:

\({Q_3} = 4 + \left[ {\frac{{\frac{{3 \cdot 125}}{4} - (45 + 34)}}{{23}}} \right] \cdot (6 - 4) \approx 5,28\).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} \approx 5,28 - 1,39 = 3,89\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì điểm \(A'\) có toạ độ là \(\left( {240;450;0} \right)\) nên khoảng cách từ \(A'\) đến các trục \(Ox,Oy\) lần lượt là \(450\;{\rm{cm}}\)\(240\;{\rm{cm}}\). Suy ra \(A'A = 450\;{\rm{cm}}\)\(A'O' = 240\;{\rm{cm}}\).

Từ giả thiết suy ra \(\overrightarrow {A'B'} = \left( { - 120;0;300} \right)\),

do đó \(A'B' = \left| {\overrightarrow {A'B'} } \right| = \sqrt {{{( - 120)}^2} + {0^2} + {{300}^2}} = 60\sqrt {29} \approx 323(\;{\rm{cm}})\).

\(O'O = A'A = 450\;{\rm{cm}}\)\(O'\) nằm trên trục \[Oy\] nên toạ độ của điểm \(O'\)\(\left( {0;450;0} \right)\).

Do đó \(\overline {O'B'} = \left( {120;0;300} \right)\)\(O'B' = \left| {\overline {O'B'} } \right| = \sqrt {{{120}^2} + {0^2} + {{300}^2}} = 60\sqrt {29} \approx 323{\rm{ }}({\rm{cm}})\).

Vậy mỗi căn lều gỗ có chiều dài là \(450\;{\rm{cm}}\), chiều rộng là \(240\;{\rm{cm}}\), mỗi cạnh bên của mặt tiền có độ dài là 323 cm.

\( \Rightarrow a + b + c = 1013\).

Lời giải

Ta có \(N'\left( t \right) = - 3{t^2} + 24t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 8\end{array} \right.\).

Bảng biến thiên

Giả sử sự lây lan của một loại virus ở một địa phương có thể được mô hình hóa bằng hàm số (ảnh 1)

Từ bảng biến thiên ta thấy số người bị nhiễm bệnh tăng trong khoảng thời gian \(\left( {0;8} \right)\).

Suy ra \(a = 0;b = 8\). Vậy \(a + b = 8\).