Tốc độ chuyển động \(v\left( {{\rm{m/s}}} \right)\) của ca nô trong khoảng thời gian 40 giây được thể hiện như hình bên dưới
Quãng đường đi được (tính bằng m) của ca nô trong khoảng thời gian này là bao nhiêu?
Tốc độ chuyển động \(v\left( {{\rm{m/s}}} \right)\) của ca nô trong khoảng thời gian 40 giây được thể hiện như hình bên dưới

Quãng đường đi được (tính bằng m) của ca nô trong khoảng thời gian này là bao nhiêu?
Quảng cáo
Trả lời:
Dựa vào đồ thị ta có \(v\left( t \right) = \left\{ \begin{array}{l}1,25t\;\;\;\;\;{\rm{khi}}\;0 \le t \le 8\\10\;\;\;\;\;\;\;\;\;{\rm{khi}}\;8 < t \le 30\\ - t + 40\;\;{\rm{khi}}\;30 < t \le 40\end{array} \right.\).
Có \(\int\limits_0^{40} {v\left( t \right)dt} = \int\limits_0^8 {1,25tdt} + \int\limits_8^{30} {10dt} + \int\limits_{30}^{40} {\left( { - t + 40} \right)dt} \)\( = 40 + 220 + 50 = 310\) (m).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ \[Oxyz\]như hình vẽ.
![Cho tứ diện \[OABC\], có \[OA,OB,OC\]đôi một vuông góc và \[OA = 5,OB = 2,OC = 4\]. Gọi \[M,N\] lần lượt là trung điểm (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/12/blobid6-1734185447.png)
Ta có \[O\left( {0;0;0} \right)\], \[A \in Oz,\;B \in Ox,\;C \in Oy\]sao cho \[AO = 5,\;OB = 2,\;OC = 4\]
\[ \Rightarrow A\left( {0;0;5} \right),\;B\left( {2;0;0} \right),\;C\left( {0;4;0} \right)\].
Khi đó: \[G\] là trọng tâm tam giác\[ABC\] nên \[G\left( {\frac{2}{3};\frac{4}{3};\frac{5}{3}} \right)\]
\[M\]là trung điểm \[OB\]nên \[M\left( {1;0;0} \right)\]
\[N\]là trung điểm \[OC\]nên \[N\left( {0;2;0} \right)\].
Phương trình mặt phẳng \[\left( {AMN} \right)\]là: \[\frac{x}{1} + \frac{y}{2} + \frac{z}{5} = 1\] hay \[10x + 5y + 2z - 10 = 0\]
Vậy khoảng cách từ \[G\] đến mặt phẳng \[\left( {AMN} \right)\]là:
\[d\left( {G,\left( {AMN} \right)} \right) = \frac{{\left| {\frac{{20}}{3} + \frac{{20}}{3} + \frac{{10}}{3} - 10} \right|}}{{\sqrt {100 + 25 + 4} }} = \frac{{20}}{{3\sqrt {129} }} \approx 0,59\].
Lời giải
Có \(f\left( x \right) = \int {f'\left( x \right)dx} = \int {\sin 2xdx} = - \frac{{\cos 2x}}{2} + C\).
Mà \(f\left( {\frac{\pi }{4}} \right) = 0 \Rightarrow C = 0\).
Do đó \(f\left( x \right) = - \frac{{\cos 2x}}{2}\).
Lại có \(F\left( x \right) = \int {f\left( x \right)dx} = - \int {\frac{{\cos 2x}}{2}dx = - \frac{1}{4}\sin 2x + {C_1}} \).
Vì \(F\left( {\frac{\pi }{2}} \right) = 2\) nên \( - \frac{1}{4}\sin \left( {2.\frac{\pi }{2}} \right) + {C_1} = 2 \Rightarrow {C_1} = 2\).
Vậy \(F\left( x \right) = - \frac{1}{4}\sin 2x + 2\). Do đó \(F\left( {\frac{\pi }{4}} \right) = - \frac{1}{4}\sin \left( {2.\frac{\pi }{4}} \right) + 2 = \frac{{ - 1}}{4} + 2 = \frac{7}{4} = 1,75\).
Câu 3
A. \({F_1}\left( x \right) = {x^3} + {x^2} - 4\).
B. \({F_2}\left( x \right) = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( Q \right):3x - 2y + 4z - 4 = 0\).
B. \(\left( Q \right):3x - 2y + 4z + 4 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
