Câu hỏi:

19/08/2025 349 Lưu

Tốc độ chuyển động \(v\left( {{\rm{m/s}}} \right)\) của ca nô trong khoảng thời gian 40 giây được thể hiện như hình bên dưới

Tốc độ chuyển động \(v\left( {{\rm{m/s}}} \right)\) của ca nô trong khoảng thời gian 40 giây được thể hiện như hình bên dưới (ảnh 1)

Quãng đường đi được (tính bằng m) của ca nô trong khoảng thời gian này là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào đồ thị ta có \(v\left( t \right) = \left\{ \begin{array}{l}1,25t\;\;\;\;\;{\rm{khi}}\;0 \le t \le 8\\10\;\;\;\;\;\;\;\;\;{\rm{khi}}\;8 < t \le 30\\ - t + 40\;\;{\rm{khi}}\;30 < t \le 40\end{array} \right.\).

\(\int\limits_0^{40} {v\left( t \right)dt} = \int\limits_0^8 {1,25tdt} + \int\limits_8^{30} {10dt} + \int\limits_{30}^{40} {\left( { - t + 40} \right)dt} \)\( = 40 + 220 + 50 = 310\) (m).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ trục tọa độ \[Oxyz\]như hình vẽ.

Cho tứ diện \[OABC\], có \[OA,OB,OC\]đôi một vuông góc và \[OA = 5,OB = 2,OC = 4\]. Gọi \[M,N\] lần lượt là trung điểm (ảnh 1)

Ta có \[O\left( {0;0;0} \right)\], \[A \in Oz,\;B \in Ox,\;C \in Oy\]sao cho \[AO = 5,\;OB = 2,\;OC = 4\]

\[ \Rightarrow A\left( {0;0;5} \right),\;B\left( {2;0;0} \right),\;C\left( {0;4;0} \right)\].

Khi đó: \[G\] là trọng tâm tam giác\[ABC\] nên \[G\left( {\frac{2}{3};\frac{4}{3};\frac{5}{3}} \right)\]

\[M\]là trung điểm \[OB\]nên \[M\left( {1;0;0} \right)\]

\[N\]là trung điểm \[OC\]nên \[N\left( {0;2;0} \right)\].

Phương trình mặt phẳng \[\left( {AMN} \right)\]là: \[\frac{x}{1} + \frac{y}{2} + \frac{z}{5} = 1\] hay \[10x + 5y + 2z - 10 = 0\]

Vậy khoảng cách từ \[G\] đến mặt phẳng \[\left( {AMN} \right)\]là:

\[d\left( {G,\left( {AMN} \right)} \right) = \frac{{\left| {\frac{{20}}{3} + \frac{{20}}{3} + \frac{{10}}{3} - 10} \right|}}{{\sqrt {100 + 25 + 4} }} = \frac{{20}}{{3\sqrt {129} }} \approx 0,59\].

Lời giải

\(f\left( x \right) = \int {f'\left( x \right)dx} = \int {\sin 2xdx} = - \frac{{\cos 2x}}{2} + C\).

\(f\left( {\frac{\pi }{4}} \right) = 0 \Rightarrow C = 0\).

Do đó \(f\left( x \right) = - \frac{{\cos 2x}}{2}\).

Lại có \(F\left( x \right) = \int {f\left( x \right)dx} = - \int {\frac{{\cos 2x}}{2}dx = - \frac{1}{4}\sin 2x + {C_1}} \).

\(F\left( {\frac{\pi }{2}} \right) = 2\) nên \( - \frac{1}{4}\sin \left( {2.\frac{\pi }{2}} \right) + {C_1} = 2 \Rightarrow {C_1} = 2\).

Vậy \(F\left( x \right) = - \frac{1}{4}\sin 2x + 2\). Do đó \(F\left( {\frac{\pi }{4}} \right) = - \frac{1}{4}\sin \left( {2.\frac{\pi }{4}} \right) + 2 = \frac{{ - 1}}{4} + 2 = \frac{7}{4} = 1,75\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP