Trong không gian với hệ tọa độ \[Oxyz\], cho mặt phẳng \[\left( P \right):x - 2y + 3z + 1 = 0\]. Hỏi vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)?
Quảng cáo
Trả lời:

Đáp án đúng là: A
Mặt phẳng \[\left( P \right):x - 2y + 3z + 1 = 0\] có vectơ pháp tuyến là \[\left( {1; - 2;3} \right)\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) Đ, c) S, d) S
Ta có: \({V_1} = \pi \int\limits_0^4 {{{(\sqrt x )}^2}} \;{\rm{d}}x = \pi \int\limits_0^4 x \;{\rm{d}}x = 8\pi \); \({V_2} = \pi \int\limits_0^4 {{{\left( {\frac{1}{2}\sqrt x } \right)}^2}} \;{\rm{d}}x = \pi \int\limits_0^4 {\frac{1}{4}x} \;{\rm{d}}x = 2\pi \).
Khi đó, \({V_1} - {V_2} = 6\pi \). Vậy thể tích của vật thể \({\rm{A}}\) là \(6\pi \approx 18,8\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\).
Lời giải
Không mất tính tổng quát, ta giả sử \(M,N,P\)lần lượt là hình chiếu vuông góc của \(A\left( {2; - 3;1} \right)\) lên các mặt phẳng tọa độ \(\left( {Oxy} \right),\left( {Oxz} \right),\left( {Oyz} \right)\).
Khi đó, \(M\left( {2; - 3;0} \right),N\left( {2;0;1} \right),P\left( {0; - 3;1} \right)\).
\(\overrightarrow {MN} = \left( {0;3;1} \right),\overrightarrow {MP} = \left( { - 2;0;1} \right)\).
\(\left( {MNP} \right)\) có một vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {3; - 2;6} \right)\).
Mặt khác, \(\left( {MNP} \right)\) đi qua \(M\left( {2; - 3;0} \right)\) nên có phương trình là:
\(3\left( {x - 2} \right) - 2\left( {y + 3} \right) + 6\left( {z - 0} \right) = 0\) hay \(3x - 2y + 6z - 12 = 0\).
Suy ra \(a = 3;b = - 2;c = 6\). Do đó \(a + b + c = 7\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\int {f(x)dx = } F(x) + C\].
B. \({\left( {\int {f(x)dx} } \right)^\prime } = f(x)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.