Câu hỏi:
16/12/2024 320Trong không gian \(Oxyz\), cho \(A\left( {2;3;4} \right)\). Điểm đối xứng với \(A\) qua trục \(Oy\) có tọa độ là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Điểm đối xứng với \(A\) qua trục \(Oy\) có tọa độ là\[\left( { - 2;3; - 4} \right)\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi \(D\) là hình phẳng giới hạn bởi các đồ thị hàm số \(y = \sqrt x ,y = \frac{1}{2}\sqrt x \) và hai đường thẳng \(x = 0,x = 4\).
a) Gọi \({V_1}\) là thể tích khối tròn xoay được tạo khi quay hình phẳng giới hạn bởi các đường \(y = 0,\)\(y = \sqrt x \), \(x = 0,x = 4\) quanh trục \(Ox\). Khi đó \({V_1} = \pi \int\limits_0^4 {x{\rm{d}}x} .\).
b) Gọi \({V_2}\) là thể tích khối tròn xoay được tạo khi quay hình phẳng giới hạn bởi các đường \(y = 0,\)\(y = \frac{1}{2}\sqrt x \), \(x = 0,x = 4\) quanh trục \(Ox\). Khi đó \({V_2} = \pi \int\limits_0^4 {\frac{1}{4}x{\rm{d}}x} .\)
c) Giá trị của biểu thức \({V_1} - {V_2}\) bằng \(12\pi \).
d) Một vật thể A có hình dạng được tạo thành khi quay hình phẳng \(D\)quanh trục \(Ox\)( đơn vị trên hai trục tính theo centimét). Thể tích của vật thể đó (làm tròn đến hàng phần mười theo đơn vị centimét khối) là \(37,7{\rm{c}}{{\rm{m}}^3}\).
Câu 2:
Trong không gian \(Oxyz\), gọi \(M,N,P\)lần lượt là hình chiếu vuông góc của \(A\left( {2; - 3;1} \right)\) lên các mặt phẳng tọa độ. Phương trình mặt phẳng \(\left( {MNP} \right)\) có dạng \(ax + by + cz - 12 = 0\). Tính \(a + b + c\).
Câu 3:
Hằng ngày anh An đi làm bằng xe máy trên cùng một cung đường từ nhà đến cơ quan mất 15 phút. Hôm nay khi đang di chuyển trên đường với vận tốc \({v_0}\) thì bất chợt anh gặp một chướng ngại vật nên anh đã hãm phanh và chuyển động chậm dần đều với gia tốc \(a = - 6{\rm{m/}}{{\rm{s}}^{\rm{2}}}\). Biết rằng tổng quãng đường từ lúc anh nhìn thấy chướng ngại vật (trước khi hãm phanh 2 giây) và quãng đường anh đã đi được trong 3 giây đầu tiên kể từ lúc hãm phanh là 35,5 m. Tính \({v_0}\left( {{\rm{m/s}}} \right)\).
Câu 4:
Cho hàm số \[F(x)\] là một nguyên hàm của hàm số \[f(x)\] trên \[K\]. Các mệnh đề sau, mệnh đề nào sai.
Câu 5:
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \cos 2x\) và thỏa mãn \(F\left( \pi \right) = 1\). Phương trình \(F\left( x \right) = 1\) có tất cả bao nhiêu nghiệm trong đoạn \(\left[ {0;3\pi } \right]\)?
Câu 6:
Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right)\): \(2x - y - 2z + 19 = 0\).
a) \(\left( P \right):2x - y - 2z + 19 = 0\) không đi qua điểm \(M\left( {2;1;3} \right)\).
b) \(\left( P \right):2x - y - 2z + 19 = 0\) song song với mặt phẳng \(\left( {P'} \right):2x - y - 2z + 1 = 0\).
c) Khoảng cách từ gốc tọa độ \(O\) đến \(\left( P \right):2x - y - 2z + 19 = 0\) lớn hơn 6.
d) Mặt phẳng \(\left( Q \right)\) song song với mặt phẳng \(\left( P \right):2x - y - 2z + 19 = 0\) và cách \(\left( P \right)\) một khoảng bằng 5 thì cách gốc tọa độ một khoảng bằng \(\frac{{11}}{3}\).
Câu 7:
Cho hàm số \(f\left( x \right) = \sin 2x\) liên tục trên \(\mathbb{R}\).
a) \(\int\limits_0^\pi {f\left( x \right)dx} = 0\).
b) Biết \(F\left( 0 \right) = \frac{1}{2}\) thì \(F\left( {\frac{\pi }{2}} \right) = 1\).
c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\cos x - f\left( x \right)} \right)dx = 2} \).
d) \(\int\limits_{ - \pi }^\pi {\left| {f\left( x \right)} \right|dx = 4} \).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận