Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:
\[\frac{{bc}}{a} + \frac{{ca}}{b} + \frac{{ab}}{c} \ge a + b + c\]
Câu hỏi trong đề: 12 bài tập Chứng minh bất đẳng thức có lời giải !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Xét hiệu, ta có: A = \[\frac{{bc}}{a} + \frac{{ca}}{b} + \frac{{ab}}{c}\] − a – b – c
A = \[\frac{{{{\left( {bc} \right)}^2} + {{\left( {ca} \right)}^2} + {{\left( {ab} \right)}^2} - {a^2}bc - a{b^2}c - ab{c^2}}}{{abc}}\]
2A = \[\frac{{2{{\left( {bc} \right)}^2} + 2{{\left( {ca} \right)}^2} + 2{{\left( {ab} \right)}^2} - 2{a^2}bc - 2a{b^2}c - 2ab{c^2}}}{{abc}}\]
2A = \[\frac{{{{\left( {ab - bc} \right)}^2} + {{\left( {bc - ca} \right)}^2} + {{\left( {ca - ab} \right)}^2}}}{{abc}}\] ≥ 0 với a, b, c là các số thực dương.
Suy ra A ≥ 0 hay \[\frac{{bc}}{a} + \frac{{ca}}{b} + \frac{{ab}}{c}\] − a – b – c ≥ 0.
Vậy \[\frac{{bc}}{a} + \frac{{ca}}{b} + \frac{{ab}}{c} \ge a + b + c\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: a ≥ 2b nên cộng hai vế với a ta được: 2a ≥ a + 2b.
Cộng hai vế với 7 được 2a + 7 > a + 2b + 7.
b) Có a ≥ 2b nên a – 2b ≥ 0.
Xét hiệu 5a + 2b – (4b + 4a) = a – 2b ≥ 0 (thỏa mãn).
Do đó 4b + 4a ≤ 5a + 2b.
Lời giải
a) Ta có: 2025 > 2024 nên \[\sqrt {2025} > \sqrt {2024} \].
Cộng hai vế với −\[\sqrt 5 \] ta được \[\sqrt {2025} - \sqrt 5 > \sqrt {2024} - \sqrt 5 \].
b) Ta có: \[\frac{1}{{2024}}\] > \[\frac{1}{{2025}}\].
Cộng hai vế với 2023 ta được \[\frac{1}{{2024}}\] + 2023 > \[\frac{1}{{2025}}\] + 2023.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.