Câu hỏi:

19/12/2024 90

Chứng minh:

a) \[\sqrt {2025} - \sqrt 5 > \sqrt {2024} - \sqrt 5 \];

b) \[\frac{1}{{2024}}\] + 2023 > \[\frac{1}{{2025}}\] + 2023.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: 2025 > 2024 nên \[\sqrt {2025} > \sqrt {2024} \].

Cộng hai vế với −\[\sqrt 5 \] ta được \[\sqrt {2025} - \sqrt 5 > \sqrt {2024} - \sqrt 5 \].

b) Ta có: \[\frac{1}{{2024}}\] > \[\frac{1}{{2025}}\].

Cộng hai vế với 2023 ta được \[\frac{1}{{2024}}\] + 2023 > \[\frac{1}{{2025}}\] + 2023.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a ≥ 2b. Chứng minh :

a) 2a + 7 > a + 2b + 7;

b) 4b + 4a ≤ 5a + 2b.

Xem đáp án » 19/12/2024 122

Câu 2:

Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:

\[\frac{{bc}}{a} + \frac{{ca}}{b} + \frac{{ab}}{c} \ge a + b + c\]

Xem đáp án » 19/12/2024 87

Câu 3:

Cho hai số a, b thỏa mãn a2 > b2 > 0. Chứng tỏ 5a2 > 4b2.

Xem đáp án » 19/12/2024 79

Câu 4:

Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:

ab(a + b – 2c) + bc(b + c – 2a) + ca(c + a – 2b) ≥ 0

Xem đáp án » 19/12/2024 61

Câu 5:

Không thực hiện phép tính, hãy so sánh:

a) 2023 + (−19) và 2024 + (−19);

b) \[\sqrt 2 \] + 2 và 4.

c) −3 + 2350 và −2 + 2350.

Xem đáp án » 19/12/2024 58

Câu 6:

Với mọi a, b chứng minh (a2 + b2)2 ≥ ab.(a + b)2.

Xem đáp án » 19/12/2024 34

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store