Câu hỏi:

09/01/2025 79

Tìm căn bậc hai số học của:

a) 121;                    

b) \({\left( { - \frac{2}{5}} \right)^2}\);                               

c) \(\sqrt {81} \).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: \(\sqrt {121} = 11\) và 112 = 121.

Do đó, số 121 có căn bậc hai số học là 11.

b) Ta có: \(\sqrt {{{\left( { - \frac{2}{5}} \right)}^2}} = \frac{2}{5}\) và \(\frac{2}{5} > 0\).

Do đó, \(\frac{2}{5}\) là căn bậc hai số học của \({\left( { - \frac{2}{5}} \right)^2}\).

c) Ta có: \(\sqrt {81} = 9\) và 9 > 0.

Do đó, 9 là căn bậc hai số học của \(\sqrt {81} \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính giá trị của biểu thức \(\sqrt {0,09} + 7\sqrt {0,36} - 3\sqrt {2,25} \).

Xem đáp án » 09/01/2025 114

Câu 2:

Giá trị của biểu thức B = \(\sqrt {6 + 2\sqrt 5 } \) là

Xem đáp án » 09/01/2025 100

Câu 3:

Giá trị 0,05 là căn bậc hai của số nào dưới đây?

Xem đáp án » 09/01/2025 89

Câu 4:

Giá trị của biểu thức C = \(11 - \sqrt {64} .\sqrt {\frac{{25}}{{16}}} + 2\sqrt {\frac{9}{4}} \) là

Xem đáp án » 09/01/2025 81

Câu 5:

Giá trị 1,6 là căn bậc hai của số nào dưới đây?

Xem đáp án » 09/01/2025 80

Câu 6:

Căn bậc hai của 0,25 là

Xem đáp án » 09/01/2025 76