Câu hỏi:
09/01/2025 7Cho tam giác ABC, tìm đẳng thức sai trong các đẳng thức sau.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Xét tam giác ABC, ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) nên \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right)\)
hay \(\widehat B + \widehat C = 180^\circ - \widehat A\).
Do đó sin A = sin (180° − \(\widehat A\)) = sin (B + C).
Suy ra khẳng định A là đúng.
Lại có \(\widehat A + \widehat B + \widehat C = 180^\circ \) suy ra \(\frac{{\widehat A + \widehat B + \widehat C}}{2} = \frac{{180^\circ }}{2} = 90^\circ \).
Do đó: cos\(\frac{A}{2}\) = sin\(\frac{{B + C}}{2}\) (hai góc phụ nhau).
Suy ra khẳng định C là đúng.
Mặt khác tanA = −tan(180° − A) = −tan(B + C).
Suy ra khẳng định D là đúng.
Vậy chọn đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có ba góc nhọn, BC = a, AC = b, AB = c. Chứng minh rằng: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Câu 2:
Cho tam giác ABC có BC = a, AC = b, AB = c. Chứng minh rằng \(\sin \frac{A}{2} \le \frac{a}{{b + c}}\).
Câu 3:
Cho tam giác ABC vuông tại A. Chứng minh rằng \(\frac{{AC}}{{AB}} = \frac{{\sin B}}{{\sin C}}\).
Câu 5:
Cho tam giác ABC vuông tại A (AB < AC), \(\widehat C = \alpha < 45^\circ \), đường trung tuyến AM, đường cao AH, MA = MB = MC = a. Chứng minh rằng:
a) sin2α = 2sinαcosα;
b) 1 + cos2α = 2cos2α;
c) 1 – cos2α = 2sin2α.
Câu 6:
Cho góc x với 0° < x < 90°. Trong các đẳng thức dưới đây, đẳng thức nào là đúng?
>Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!