CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đ, b) Đ, c) Đ, d) Đ

Cho hình chóp  S . A B C D  có đáy là hình chữ nhật và  S A  vuông góc với mặt phẳng đáy. Gọi  H , K  theo thứ tự là hình chiếu của  A  trên các cạnh  S B , S D . (ảnh 1)

a) Vì

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\).

b) Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\left( {{\rm{do}}\;SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).

Vì \(\left\{ \begin{array}{l}CD \bot \left( {SAD} \right)\\SD \subset \left( {SAD} \right)\end{array} \right. \Rightarrow CD \bot SD\) hay tam giác \(SCD\) vuông tại \(D\).

c) Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA(\;{\rm{do}}\;SA \bot \left( {ABCD} \right))\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).

Ta có \(\left\{ \begin{array}{l}AH \bot SB\\AH \bot BC\left( {{\rm{do}}\;BC \bot \left( {SAB} \right)} \right)\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)(1).

Tương tự \(\left\{ \begin{array}{l}AK \bot SD\\AK \bot CD\left( {{\rm{do}}\;CD \bot \left( {SAD} \right)} \right)\end{array} \right. \Rightarrow AK \bot \left( {SCD} \right) \Rightarrow AK \bot SC\) (2).

Từ (1) và (2) suy ra \(SC \bot \left( {AHK} \right)\).

d) Vì \(SC \bot \left( {AHK} \right)\) mà \(HK \subset \left( {AHK} \right)\) nên \(HK \bot SC\).

Lời giải

Hướng dẫn giải

Gọi \(A\) là biến cố: “Lấy được 1 quả bóng mới”.

Xác suất để lấy được 1 quả bóng mới là: \(P\left( A \right) = \frac{{C_6^1}}{{C_{10}^5}} = \frac{1}{{42}}\).

Do đó xác suất của biến cố lấy được ít nhất 2 quả bóng mới là: \(P\left( {\overline A } \right) = 1 - \frac{1}{{42}} = \frac{{41}}{{42}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP