Câu hỏi:
12/01/2025 145Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh \(a\) và các cạnh bên bằng \(a\). Gọi \(M,N\) lần lượt là trung điểm \(AD\) và \(SD\). Số đo góc \(\left( {MN,SC} \right)\) bằng
Quảng cáo
Trả lời:
Đáp án đúng là: D
Gọi \(E\) là trung điểm của \(CD\).
Vì \(N,E\) lần lượt là trung điểm của \(SD,CD\) nên \(NE//SC\) và \(NE = \frac{1}{2}SC = \frac{a}{2}\).
Do đó \(\left( {MN,SC} \right) = \left( {MN,NE} \right) = \widehat {MNE}\).
Vì \(ABCD\) là hình vuông cạnh \(a\) nên \(AC = a\sqrt 2 \) mà \(ME = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\).
Tương tự \(MN = \frac{a}{2}\).
Vì \(M{E^2} = M{N^2} + N{E^2}\) nên \(\Delta MNE\) vuông tại \(N\). Do đó \(\widehat {MNE} = 90^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có \({\log _{{a^2}}}\left( {a{b^2}} \right) = \frac{{{{\log }_a}\left( {a{b^2}} \right)}}{{{{\log }_a}{a^2}}}\)\( = \frac{{{{\log }_a}a + {{\log }_a}{b^2}}}{2}\)\( = \frac{{1 + 2{{\log }_a}b}}{2}\)\( = \frac{{1 + 4}}{2} = \frac{5}{2}\).
Lời giải
Đáp án đúng là: B
Gọi \(M\) là trung điểm của \(BC\).
Vì tam giác \(ABC\) là tam giác đều nên \(AM \bot BC\) mà \(SA \bot BC\) (do \(SA \bot \left( {ABC} \right)\)) nên \(BC \bot \left( {SAM} \right) \Rightarrow BC \bot SM\).
Do đó \(\left[ {S,BC,A} \right] = \widehat {SMA}\).
Vì tam giác \(ABC\) đều nên \(AM = \frac{{a\sqrt 3 }}{2}\) mà \(SA = \frac{{a\sqrt 3 }}{2}\) nên tam giác \(SAM\)vuông cân tại \(A\).
Suy ra \(\widehat {SMA} = 45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.