Câu hỏi:
12/01/2025 389
B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 13 đến câu 14. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho bất phương trình \({\log _{\frac{e}{3}}}2x < {\log _{\frac{e}{3}}}\left( {9 - x} \right)\).
a) Điều kiện xác định của bất phương trình \(0 < x < 9\).
b) Bất phương trình tương đương với bất phương trình \(2x < 9 - x\).
c) Tập nghiệm bất phương trình là \(\left( {3;9} \right)\).
d) Số nghiệm nguyên của bất phương trình là 3.
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Đ, b) S, c) Đ, d) S
a) Điều kiện: \(\left\{ \begin{array}{l}2x > 0\\9 - x > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x < 9\end{array} \right. \Leftrightarrow 0 < x < 9\).
b) Ta có \({\log _{\frac{e}{3}}}2x < {\log _{\frac{e}{3}}}\left( {9 - x} \right)\)\( \Leftrightarrow 2x > 9 - x\).</>
c) \({\log _{\frac{e}{3}}}2x < {\log _{\frac{e}{3}}}\left( {9 - x} \right)\)\( \Leftrightarrow 2x > 9 - x\)\( \Leftrightarrow x > 3\).</>
Kết hợp với điều kiện ta có tập nghiệm của bất phương trình là \(\left( {3;9} \right)\).
d) Tập các nghiệm nguyên của bất phương trình là \(\left\{ {4;5;6;7;8} \right\}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có \({\log _{{a^2}}}\left( {a{b^2}} \right) = \frac{{{{\log }_a}\left( {a{b^2}} \right)}}{{{{\log }_a}{a^2}}}\)\( = \frac{{{{\log }_a}a + {{\log }_a}{b^2}}}{2}\)\( = \frac{{1 + 2{{\log }_a}b}}{2}\)\( = \frac{{1 + 4}}{2} = \frac{5}{2}\).
Lời giải
Đáp án đúng là: B
Gọi \(M\) là trung điểm của \(BC\).
Vì tam giác \(ABC\) là tam giác đều nên \(AM \bot BC\) mà \(SA \bot BC\) (do \(SA \bot \left( {ABC} \right)\)) nên \(BC \bot \left( {SAM} \right) \Rightarrow BC \bot SM\).
Do đó \(\left[ {S,BC,A} \right] = \widehat {SMA}\).
Vì tam giác \(ABC\) đều nên \(AM = \frac{{a\sqrt 3 }}{2}\) mà \(SA = \frac{{a\sqrt 3 }}{2}\) nên tam giác \(SAM\)vuông cân tại \(A\).
Suy ra \(\widehat {SMA} = 45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.