Câu hỏi:

12/01/2025 14,949 Lưu

Một cái hộp hình lập phương, bên trong nó đựng một mô hình đồ chơi có dạng hình chóp tứ giác đều mà đỉnh của hình chóp đó trùng với tâm của một mặt chiếc hộp, giả sử hình vuông đáy của hình chóp trùng với một mặt của chiếc hộp (mặt này cùng với mặt chứa đỉnh hình chóp là hai mặt đối nhau). Biết cạnh của chiếc hộp bằng 30 cm, hãy tính thể tích phần không gian bên trong chiếc hộp không bị chiếm bởi mô hình đồ chơi dạng hình chóp (mô hình đồ chơi được làm bởi chất liệu nhựa đặc bên trong, kết quả có đơn vị là dm3).

Một cái hộp hình lập phương, bên trong nó đựng một mô hình đồ chơi có dạng hình chóp tứ giác đều mà đỉnh của hình chóp đó trùng với tâm của một mặt chiếc hộp, giả sử hình vuông đáy của hình chóp trùng với một mặt của chiếc hộp (mặt này cùng với mặt chứa đỉnh hình chóp là hai mặt đối nhau). Biết cạnh của chiếc hộp bằng 30 cm, hãy tính thể tích phần không gian bên trong chiếc hộp không bị chiếm bởi mô hình đồ chơi dạng hình chóp (mô hình đồ chơi được làm bởi chất liệu nhựa đặc bên trong, kết quả có đơn vị là dm3). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đổi 30 cm = 3 dm.

Thể tích của hình lập phương là \({S_1} = {3^3} = 27\) dm3.

Thể tích của khối chóp là \({S_2} = \frac{1}{3}{.3^2}.3 = 9\) dm3.

Thể tích phần không gian bên trong chiếc hộp không bị chiếm bởi mô hình đồ chơi dạng hình chóp là \(S = {S_1} - {S_2} = 27 - 9 = 18\) dm3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Trả lời: 11,7

Số tiền anh Toàn nhận được sau \(n\) lần tăng lương là \({S_n} = A{\left( {1 + r} \right)^n}\) trong đó:

\(A\) là số tiền lương tháng đầu tiên người đó nhận được

\(r\) là số % lương người đó được tăng

\(n\) là kì hạn người đó được tăng lương.

Từ năm 2013 đến năm 2024 anh Toàn được 3 lần tăng lương.

Do đó số tiền anh nhận được ở năm 2024 là \(6{\left( {1 + 25\% } \right)^3} \approx 11,7\) triệu đồng.

Câu 2

A. \(a = \sqrt 2 \).

B. \(a = \frac{1}{{\sqrt 2 }}\).

C. \(a = \frac{1}{2}\).

D. \(a = 2\).

Lời giải

Đáp án đúng là: A

Vì hàm số \(y = {\log _a}x\) đồng biến nên loại đáp án B, C.

Đồ thị hàm số \(y = {\log _a}x\) đi qua điểm \(\left( {2;2} \right)\) nên \(2 = {\log _a}2 \Rightarrow {a^2} = 2 \Rightarrow a = \sqrt 2 \).

Câu 3

A. Tồn tại duy nhất một mặt phẳng \(\left( \alpha \right)\) chứa đường thẳng \(d\) và \(\left( \alpha \right)\) song song với \(\left( P \right)\).

B. Không tồn tại mặt phẳng \(\left( \alpha \right)\)chứa đường thẳng \(d\) và \(\left( \alpha \right)\) song song với \(\left( P \right)\).

C. Tồn tại duy nhất một mặt phẳng \(\left( \alpha \right)\) chứa đường thẳng \(d\) và \(\left( \alpha \right)\) vuông góc với \(\left( P \right)\).

D. Tồn tại duy nhất một đường thẳng \(\Delta \) nằm trên mặt phẳng \(\left( P \right)\) và \(\Delta \) vuông góc với \(d\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP