Câu hỏi:

14/01/2025 152

Hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A. Biết OB = 3 cm, OA = 5 cm. Chọn khẳng định sai trong các khẳng định dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A nên AB = AC, \(\widehat {BAO} = \widehat {CAO}\),

\(\widehat {BOA} = \widehat {COA}\).

Xét ∆ABO vuông tại B có OB = 3 cm, OA = 5 cm, theo định lí Pythagore ta có:

AB = \(\sqrt {O{A^2} - O{B^2}} = 4\) cm.

Nên AC = AB = 4 cm hay đáp án A đúng.

Xét tam giác AOB vuông tại B có sin\(\widehat {ABO}\) = \(\frac{{AB}}{{OA}} = \frac{4}{5}\) nên C đúng.

Mà \(\widehat {BOA} = \widehat {COA}\) nên sin\(\widehat {COA}\) = \(\frac{4}{5}\) do đó D sai.

Đáp án cần chọn là D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Gọi R là bán kính của (O).

Xét (O) có MA = MB, \(\widehat {AMO} = \widehat {BMO}\) (tính chất hai tiếp tuyến cắt nhau).

Ta có: \(\widehat {AMB} = 60^\circ \) nên tam giác ABM đều.

Do đó, chu vi tam giác ABM là: MA + MB + AB = 3AB = 24 suy ra AB = 8 cm.

Lại có \(\widehat {AMO} = \widehat {BMO} = \frac{1}{2}\widehat {AMB} = 30^\circ \).

Xét tam giasv AMO vuông tại A có tan\(\widehat {AMO}\) = \(\frac{{OA}}{{MA}}\)

suy ra OA = MA.tan30° = \(\frac{{8\sqrt 3 }}{3}\) cm.

Câu 2

Lời giải

Đáp án đúng là: D

 Cho OD = BA = 2R. Tính AC và BD theo R. (ảnh 1)

Xét nửa đường tròn (O) có MC và AC là hai tiếp tuyến cắt nhau tại C nên OC là tia phân giác của \(\widehat {MOA}\) do đó \(\widehat {AOC} = \widehat {COM}\).

Lại có MD và BD là hai tiếp tuyến cắt nhau tại D nên OD là tia phân giác của \(\widehat {MOB}\) do đó \(\widehat {DOB} = \widehat {DOM}\).

Từ đó \(\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD} = \frac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \).

Nên \(\widehat {COD} = 90^\circ \) hay tam giác COD vuông tại O và \(\widehat {MDO} = \widehat {MOC}\).

Xét ∆CMO và ∆OMD có \(\widehat {MDO} = \widehat {MOC}\) và \(\widehat {DMO} = \widehat {OMC} = 90^\circ \).

Do đó ∆CMO ∽ ∆OMD (g.g) suy ra \(\frac{{MC}}{{MO}} = \frac{{MO}}{{MD}}\) hay MO2 = MC.MD.

Áp dụng định lí Pythagore vào tam giác BDO ta có:

BD = \(\sqrt {O{D^2} - O{B^2}} = R\sqrt 3 \).

Mà MD = BD; MC = AC (tính chất hai tiếp tuyến cắt nhau) nên MD = \(R\sqrt 3 \).

MÀ MO2 = MC.MD (cmt) nên MC = \(\frac{{O{M^2}}}{{MD}} = \frac{{{R^2}}}{{R\sqrt 3 }} = \frac{{R\sqrt 3 }}{3}\) nên AC = \(\frac{{R\sqrt 3 }}{3}\).

Vậy BD = \(R\sqrt 3 \) và AC = \(\frac{{R\sqrt 3 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP