Câu hỏi:

14/01/2025 150

Hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A. Biết OB = 3 cm, OA = 5 cm. Chọn khẳng định sai trong các khẳng định dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A nên AB = AC, \(\widehat {BAO} = \widehat {CAO}\),

\(\widehat {BOA} = \widehat {COA}\).

Xét ∆ABO vuông tại B có OB = 3 cm, OA = 5 cm, theo định lí Pythagore ta có:

AB = \(\sqrt {O{A^2} - O{B^2}} = 4\) cm.

Nên AC = AB = 4 cm hay đáp án A đúng.

Xét tam giác AOB vuông tại B có sin\(\widehat {ABO}\) = \(\frac{{AB}}{{OA}} = \frac{4}{5}\) nên C đúng.

Mà \(\widehat {BOA} = \widehat {COA}\) nên sin\(\widehat {COA}\) = \(\frac{4}{5}\) do đó D sai.

Đáp án cần chọn là D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Gọi R là bán kính của (O).

Xét (O) có MA = MB, \(\widehat {AMO} = \widehat {BMO}\) (tính chất hai tiếp tuyến cắt nhau).

Ta có: \(\widehat {AMB} = 60^\circ \) nên tam giác ABM đều.

Do đó, chu vi tam giác ABM là: MA + MB + AB = 3AB = 24 suy ra AB = 8 cm.

Lại có \(\widehat {AMO} = \widehat {BMO} = \frac{1}{2}\widehat {AMB} = 30^\circ \).

Xét tam giasv AMO vuông tại A có tan\(\widehat {AMO}\) = \(\frac{{OA}}{{MA}}\)

suy ra OA = MA.tan30° = \(\frac{{8\sqrt 3 }}{3}\) cm.

Câu 2

Cho OD = BA = 2R. Tính AC và BD theo R.

Lời giải

Đáp án đúng là: D

 Cho OD = BA = 2R. Tính AC và BD theo R. (ảnh 1)

Xét nửa đường tròn (O) có MC và AC là hai tiếp tuyến cắt nhau tại C nên OC là tia phân giác của \(\widehat {MOA}\) do đó \(\widehat {AOC} = \widehat {COM}\).

Lại có MD và BD là hai tiếp tuyến cắt nhau tại D nên OD là tia phân giác của \(\widehat {MOB}\) do đó \(\widehat {DOB} = \widehat {DOM}\).

Từ đó \(\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD} = \frac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \).

Nên \(\widehat {COD} = 90^\circ \) hay tam giác COD vuông tại O và \(\widehat {MDO} = \widehat {MOC}\).

Xét ∆CMO và ∆OMD có \(\widehat {MDO} = \widehat {MOC}\) và \(\widehat {DMO} = \widehat {OMC} = 90^\circ \).

Do đó ∆CMO ∽ ∆OMD (g.g) suy ra \(\frac{{MC}}{{MO}} = \frac{{MO}}{{MD}}\) hay MO2 = MC.MD.

Áp dụng định lí Pythagore vào tam giác BDO ta có:

BD = \(\sqrt {O{D^2} - O{B^2}} = R\sqrt 3 \).

Mà MD = BD; MC = AC (tính chất hai tiếp tuyến cắt nhau) nên MD = \(R\sqrt 3 \).

MÀ MO2 = MC.MD (cmt) nên MC = \(\frac{{O{M^2}}}{{MD}} = \frac{{{R^2}}}{{R\sqrt 3 }} = \frac{{R\sqrt 3 }}{3}\) nên AC = \(\frac{{R\sqrt 3 }}{3}\).

Vậy BD = \(R\sqrt 3 \) và AC = \(\frac{{R\sqrt 3 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A. Khẳng định nào dưới đây là sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hai tiếp tuyến tuyến của đường tròn cắt nhau tại một điểm. Chọn khẳng định sai trong các khẳng định dưới đây.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay