Câu hỏi:
14/01/2025 56Sử dụng dữ kiện của bài toán dưới đây để trả lời Bài 8, 9, 10.
Cho nửa đường tròn O, đường kính AB. Vẽ các tiếp tuyến Ax, By với nửa đường tròn cùng phía đối với AB. Từ điểm M trên nửa đường tròn (M khác A, B) vẽ tiếp tuyến với nửa đường tròn, cắt Ax và By lần lượt lượt tại C và D.
Cho OD = BA = 2R. Tính AC và BD theo R.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Xét nửa đường tròn (O) có MC và AC là hai tiếp tuyến cắt nhau tại C nên OC là tia phân giác của \(\widehat {MOA}\) do đó \(\widehat {AOC} = \widehat {COM}\).
Lại có MD và BD là hai tiếp tuyến cắt nhau tại D nên OD là tia phân giác của \(\widehat {MOB}\) do đó \(\widehat {DOB} = \widehat {DOM}\).
Từ đó \(\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD} = \frac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \).
Nên \(\widehat {COD} = 90^\circ \) hay tam giác COD vuông tại O và \(\widehat {MDO} = \widehat {MOC}\).
Xét ∆CMO và ∆OMD có \(\widehat {MDO} = \widehat {MOC}\) và \(\widehat {DMO} = \widehat {OMC} = 90^\circ \).
Do đó ∆CMO ∽ ∆OMD (g.g) suy ra \(\frac{{MC}}{{MO}} = \frac{{MO}}{{MD}}\) hay MO2 = MC.MD.
Áp dụng định lí Pythagore vào tam giác BDO ta có:
BD = \(\sqrt {O{D^2} - O{B^2}} = R\sqrt 3 \).
Mà MD = BD; MC = AC (tính chất hai tiếp tuyến cắt nhau) nên MD = \(R\sqrt 3 \).
MÀ MO2 = MC.MD (cmt) nên MC = \(\frac{{O{M^2}}}{{MD}} = \frac{{{R^2}}}{{R\sqrt 3 }} = \frac{{R\sqrt 3 }}{3}\) nên AC = \(\frac{{R\sqrt 3 }}{3}\).
Vậy BD = \(R\sqrt 3 \) và AC = \(\frac{{R\sqrt 3 }}{3}\).
Câu hỏi cùng đoạn
Câu 2:
Cho AB = 10 cm. Khi đó, MC.MD bằng
Lời giải của GV VietJack
Đáp án đúng là: A
Có AB = 2R = 10 cm suy ra R = 5 cm.
Từ câu 9, có MC.MD = OM2 = R2 = 25 cm2.
Câu 3:
Cho OD = 8 cm, OB = 5 cm. Tính AC và BD được
Lời giải của GV VietJack
Đáp án đúng là: B
Áp dụng định lí Pythagore vào tam giác BOD, ta có:
BD = \(\sqrt {O{D^2} - O{B^2}} = \sqrt {{8^2} - {5^2}} = \sqrt {39} \) cm.
Mà MD = BD, MC = AC (tính chất hia tiếp tuyến cắt nhau) nên MD = \(\sqrt {39} \) cm.
Ta có: MC.MD = OM2 = OB2 = 25 suy ra MC = \(\frac{{25}}{{MD}} = \frac{{25}}{{\sqrt {39} }} = \frac{{25\sqrt {39} }}{{39}}\).
Do đó, AC = MC = \(\frac{{25\sqrt {39} }}{{39}}\).
Vậy BD = \(\sqrt {39} \) và AC = \(\frac{{25\sqrt {39} }}{{39}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O). Từ một điểm M ở ngoài (O), vẽ hai tiếp tuyến MA và MB sao cho góc \(\widehat {AMB} = 60^\circ \). Biết chu vi tam giác MAB là 24 cm, tính độ dài bán kính của đường tròn.
Câu 2:
Hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A. Khẳng định nào dưới đây là sai?
Câu 3:
Hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A. Biết OB = 3 cm, OA = 5 cm. Chọn khẳng định sai trong các khẳng định dưới đây?
Câu 4:
Cho đường tròn (O). Từ một điểm M ở ngoài (O), vẽ hai tiếp tuyến MA và MB sao cho góc \(\widehat {AMB} = 120^\circ \). Biết chu vi tam giác MAB là 6(3 + 2\(\sqrt 3 \)) cm, tính độ dài AB.
Câu 6:
Cho hai tiếp tuyến tuyến của đường tròn cắt nhau tại một điểm. Chọn khẳng định sai trong các khẳng định dưới đây.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!