Câu hỏi:

19/08/2025 1,290 Lưu

Cho hàm số \(y = {x^2} - 4x + 1\). Khi đó:

a) Tọa độ đỉnh \(I\left( {2;3} \right)\).

b) Phương trình trục đối xứng parabol: \(x = 3\).

c) Bề lõm parabol hướng lên.

d) Đồ thị parabol như hình bên

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) S, c) Đ, d) Đ

a) Tọa độ đỉnh \(I\) của parabol \({x_I} = - \frac{b}{{2a}} = - \frac{{ - 4}}{{2.1}} = 2;{y_I} = {2^2} - 4.2 + 1 = - 3\).

Suy ra \(I\left( {2; - 3} \right)\).

b) Phương trình trục đối xứng parabol: \(x = 2\).

c) Vì \(a = 1 > 0\) nên bề lõm parabol hướng lên.

d) Ta có bảng giá trị

Cho hàm số \(y = {x^2} - 4x + 1\). Khi đó:  a) Tọa độ đỉnh \(I\left( {2;3} \right)\).  b) Phương trình trục đối xứng parabol: \(x = 3\). (ảnh 1)

Ta có đồ thị

Cho hàm số \(y = {x^2} - 4x + 1\). Khi đó:  a) Tọa độ đỉnh \(I\left( {2;3} \right)\).  b) Phương trình trục đối xứng parabol: \(x = 3\). (ảnh 2)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Độ cao của quả bóng tính theo thời gian được xác định bởi hàm số \(h\left( t \right) = a{t^2} + bt + c\) (tính bằng mét), \(t\): giây, \(t \ge 0\).

Với các thông số trên ta có:

Lời giải

a) Dựa vào đồ thị ta có tập giá trị của hàm số là \(\left[ {0;5} \right]\).

b) Dựa vào đồ thị hàm số ta có hàm số đồng biến trên các khoảng \(\left( { - 3;0} \right)\)\(\left( {4;7} \right)\).

Câu 3

A. \(y = {x^2} + 2x - 1\).                        
B. \(y = {x^2} + 2x - 2\).    
C. \(y = - {x^2} - 2x + 1\).                                                             
D. \(y = {x^2} - 2x - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\).              

B. \(f\left( x \right) > 0 \Leftrightarrow x \in \left[ {1;3} \right]\).                              

C. \(f\left( x \right) > 0 \Leftrightarrow x \in \left( {1;3} \right)\). 
D. \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP