Câu hỏi:

25/01/2025 58

Kết quả \[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left( {\sqrt {2020{{\rm{x}}^2} + {\rm{x}} + 3} - \sqrt {2021{{\rm{x}}^2} + 2} } \right)\] bằng

Đáp án chính xác

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có\[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left( {\sqrt {2020{{\rm{x}}^2} + {\rm{x}} + 3} - \sqrt {2021{{\rm{x}}^2} + 2} } \right) = \mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left[ {{\rm{x}}\left( {\sqrt {2020 + \frac{1}{{\rm{x}}} + \frac{3}{{{{\rm{x}}^2}}}} - \sqrt {2021 + \frac{2}{{{{\rm{x}}^2}}}} } \right)} \right]\]

Vì\[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } {\rm{x}} = + \infty ,\mathop {\lim }\limits_{{\rm{x}} \to \infty } \left( {\sqrt {2020 + \frac{1}{{\rm{x}}} + \frac{3}{{{{\rm{x}}^2}}}} - \sqrt {2021 + \frac{2}{{{{\rm{x}}^2}}}} } \right) = \sqrt {2020} - \sqrt {2021} < 0\]

\[ \Rightarrow \mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left[ {{\rm{x}}\left( {\sqrt {2020 + \frac{{\rm{1}}}{{\rm{x}}} + \frac{3}{{{{\rm{x}}^2}}}} - \sqrt {2021 + \frac{2}{{{{\rm{x}}^2}}}} } \right)} \right] = - \infty \]

Chọn đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm giới hạn \[{\rm{A}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{\rm{n}}} - 1}}{{{{\rm{x}}^{\rm{m}}} - 1}},{\rm{m}},{\rm{n}} \in {\mathbb{N}^ * }\]:

Xem đáp án » 25/01/2025 159

Câu 2:

Biết \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 ({\rm{x}} - 1)}} = \frac{{{\rm{a}}\sqrt {\rm{2}} }}{{\rm{b}}}{\rm{ + c}}\] với \[{\rm{a, b, c}} \in \mathbb{Z}\] và \[\frac{{\rm{a}}}{{\rm{b}}}\] là phân số tối giản. Giá trị của a + b + c bằng:

Xem đáp án » 25/01/2025 108

Câu 3:

Cho hàm số \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}^2} - 3\,\,{\rm{khi}}\,\,{\rm{x}} \ge 2}\\{{\rm{x}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} < 2}\end{array}} \right.\). Chọn kết quả đúng của \[\mathop {\lim }\limits_{{\rm{x}} \to 2} {\rm{f}}\left( {\rm{x}} \right)\]

Xem đáp án » 25/01/2025 99

Câu 4:

Biết giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\], m là số thực; a, b là các số nguyên và \[\frac{{\rm{a}}}{{\rm{b}}}\] tối giản. Tính a − b

Xem đáp án » 25/01/2025 92

Câu 5:

Tính giới hạn của hàm số \[\mathop {\lim }\limits_{{\rm{x}} \to \infty } \frac{{{{\rm{x}}^3} + 3{{\rm{x}}^2} + 4}}{{2{{\rm{x}}^3}}}\]

Xem đáp án » 25/01/2025 78

Câu 6:

Chọn đáp án đúng:

Giả sử \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}}\] thì:

Xem đáp án » 25/01/2025 75

Câu 7:

Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \sqrt {\frac{{\left( {{{\rm{x}}^2} + 3} \right){\rm{x}}}}{{{{\rm{x}}^3} - 1}}} \] bằng

Xem đáp án » 25/01/2025 75
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua