Câu hỏi:
25/01/2025 68Cho \[{\rm{a, b}} \in {\rm{R}}\] thỏa mãn\[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {{\rm{(a + 5)}}{{\rm{x}}^{\rm{2}}} - {\rm{2(a + 2)x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1}}}}\]\[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1 }}}}{\rm{ = }}\frac{{{\rm{13}}}}{{{\rm{12}}}}\]. Tính giá trị của \[{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^2}\]
Quảng cáo
Trả lời:
Vì giới hạn đã cho tồn tại nên \[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \left( {\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} } \right){\rm{ = 0}}\]
\[ \Rightarrow \sqrt {{\rm{a + b + 8}}} - {\rm{3 = 0}} \Rightarrow {\rm{b = 1}} - {\rm{a}}\]
Khi đó\[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1}}}}{\rm{ = }}\frac{{13}}{{12}}\]
\[ \Rightarrow \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + a + 8}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1}}}}{\rm{ = }}\frac{{{\rm{13}}}}{{{\rm{12}}}}\]
\[ \Rightarrow \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{{\rm{a + 5}}}}{{\left( {\sqrt {{\rm{(a + 5)}}{{\rm{x}}^{\rm{2}}} - {\rm{2(a + 2)x + a + 8}}} {\rm{ + }}\sqrt {{\rm{6x + 3}}} } \right)}}{\rm{ = }}\frac{{{\rm{13}}}}{{{\rm{12}}}}\]
\[ \Leftrightarrow \frac{{{\rm{a}} + 5}}{6} = \frac{{13}}{{12}} \Leftrightarrow {\rm{a}} = \frac{3}{2} \Rightarrow {\rm{b}} = - \frac{1}{2} \Rightarrow {{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}} = \frac{5}{2}\]
Chọn đáp án B
Đáp án cần chọn là: B
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì\[\mathop {\lim }\limits_{{\rm{x}} \to 2} \left( {{\rm{x}} - 2} \right) = 0 \Rightarrow \]để\[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\]thì\[\mathop {\lim }\limits_{{\rm{x}} \to 2} \left( {\sqrt {3{\rm{x}} + 3} - {\rm{m}}} \right) = 0\]. Do đó x = 2 là nghiệm của phương trình \[\sqrt {3{\rm{x}} + 3} - {\rm{m}} = 0 \Rightarrow {\rm{m}} = 3\]
Với m = 3 ta được:
\[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - 3}}{{{\rm{x}} - 2}} = \mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\left( {\sqrt {3{\rm{x}} + 3} - 3} \right)\left( {\sqrt {3{\rm{x}} + 3} + 3} \right)}}{{\left( {{\rm{x}} - 2} \right)\left( {\sqrt {3{\rm{x}} + 3} + 3} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{3{\rm{x}} - 6}}{{\left( {{\rm{x}} - 2} \right)\left( {\sqrt {3{\rm{x}} + 3} + 3} \right)}}\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{3\left( {{\rm{x}} - 2} \right)}}{{\left( {{\rm{x}} - 2} \right)\left( {\sqrt {3{\rm{x}} + 3} + 3} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{3}{{\left( {\sqrt {3{\rm{x}} + 3} + 3} \right)}} = \frac{1}{2}\]
\[ \Rightarrow {\rm{a}} = 1,{\rm{b}} = 2 \Rightarrow {\rm{a}} - {\rm{b}} = - 1\]Chọn đáp án C
Đáp án cần chọn là: C
Lời giải
Ta có
\[{\rm{A = }}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{{{\rm{x}}^{\rm{n}}} - {\rm{1}}}}{{{{\rm{x}}^{\rm{m}}} - {\rm{1}}}}{\rm{ = }}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{{\rm{(x}} - {\rm{1)(}}{{\rm{x}}^{{\rm{n}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{3}}}}{\rm{ + }}...{\rm{ + x + 1)}}}}{{{\rm{(x}} - {\rm{1)(}}{{\rm{x}}^{{\rm{m}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - {\rm{3}}}}{\rm{ + }}...{\rm{ + x + 1)}}}}\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{{\rm{n}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{3}}}}{\rm{ + }}...{\rm{ + x + 1}}}}{{{{\rm{x}}^{{\rm{m}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - 3}}{\rm{ + }}...{\rm{ + x + 1}}}} = \frac{{1 + 1 + 1 + ... + 1 + 1}}{{1 + 1 + 1 + ... + 1 + 1}} = \frac{{\rm{n}}}{{\rm{m}}}\]
Chọn đáp án D
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.