Cho cấp số cộng (un) với số hạng đầu u1 và công sai . Tổng n số hạng đầu tiên của cấp số cộng đã cho được tính theo công thức nào dưới đây ?
A. \[{{\rm{S}}_{\rm{n}}}{\rm{ = n}}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\frac{{{\rm{n}}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}}}{{\rm{2}}}\]
B. \[{{\rm{S}}_{\rm{n}}}{\rm{ = n}}{{\rm{u}}_{\rm{1}}}{\rm{ + n}}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}\]
C. \[{{\rm{S}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{n}}{{\rm{u}}_{\rm{1}}}{\rm{ + n}}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}}}{{\rm{2}}}\]
D. \[{{\rm{S}}_{\rm{n}}}{\rm{ = n}}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\frac{{{{\rm{n}}^{\rm{2}}}{\rm{d}}}}{{\rm{2}}}\]
Quảng cáo
Trả lời:

Theo định lí ta có công thức tính tổng n số hạng đầu tiên của cấp số cộng là:
\[{{\rm{S}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{n}}\left[ {{\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}} \right]}}{{\rm{2}}}{\rm{ = }}\frac{{{\rm{2n}}{{\rm{u}}_{\rm{1}}}{\rm{ + n}}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}}}{{\rm{2}}}{\rm{ = n}}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\frac{{{\rm{n}}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}}}{{\rm{2}}}\]
Đáp án cần chọn là: A
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. P = 79 .
B. P = 16.
C. P = 80.
D. P = 64.
Lời giải
Vì ba số thực a, b, c là ba số hạng liên tiếp của một cấp số cộng nên ta có:
\[{\rm{b = }}\frac{{{\rm{a + c}}}}{{\rm{2}}} \Leftrightarrow {\rm{a + c = 2b}} \Leftrightarrow {\rm{c = 2b}} - {\rm{a}}\left( 1 \right)\]
Vì ba số thực b, c, d là ba số hạng liên tiếp của một cấp số cộng nên ta có:
\[{\rm{c = }}\frac{{{\rm{b + d}}}}{{\rm{2}}} \Leftrightarrow {\rm{b + d = 2c}} \Leftrightarrow {\rm{d = 2c}} - {\rm{b = 2}}\left( {{\rm{2b}} - {\rm{a}}} \right) - {\rm{b = 4b}} - {\rm{2a}} - {\rm{b = 3b}} - {\rm{2a}}\left( {\rm{2}} \right)\]
Tổng của bốn số thực a, b, c, d bằng 4 nên ta có:
\[{\rm{a + b + c + d = 4}} \Leftrightarrow {\rm{a + b + }}\left( {{\rm{2b}} - {\rm{a}}} \right){\rm{ + }}\left( {{\rm{3b}} - {\rm{2a}}} \right){\rm{ = 4}}\]
\[ \Leftrightarrow {\rm{6b}} - {\rm{2a = 4}} \Leftrightarrow {\rm{3b}} - {\rm{a = 2}} \Leftrightarrow {\rm{a = 3b}} - {\rm{2}}\]
Thế a = 3b – 2 vào (1) ta được: \[{\rm{c = 2b}} - \left( {{\rm{3b}} - {\rm{2}}} \right){\rm{ = 2}} - {\rm{b}}\]
Thế a = 3b – 2 vào (2) ta được: \[{\rm{d = 3b}} - {\rm{2}}\left( {{\rm{3b}} - {\rm{2}}} \right){\rm{ = 3b}} - {\rm{6b + 4 = 4}} - {\rm{3b}}\]
Tổng các bình phương của bốn số thực a, b, c, d bằng 24 nên ta có:
\[{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}{\rm{ + }}{{\rm{c}}^{\rm{2}}}{\rm{ + }}{{\rm{d}}^{\rm{2}}}{\rm{ = 24}} \Leftrightarrow {\left( {{\rm{3b}} - {\rm{2}}} \right)^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}{\rm{ + }}{\left( {{\rm{2}} - {\rm{b}}} \right)^{\rm{2}}}{\rm{ + }}{\left( {{\rm{4}} - {\rm{3b}}} \right)^2}{\rm{ = }}24\]
\[ \Leftrightarrow 9{b^2} - 12b + 4 + {b^2} + 4 - 4b + {b^2} + 16 - 24b + 9{b^2}{\rm{ = }}24\]
\[ \Leftrightarrow 20{b^2} - 40b\,{\rm{ = }}0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{\rm{b = 0}}}\\{{\rm{b = 2}}}\end{array}} \right.\]
Với b = 0 ta có: \[{\rm{a = 3}}{\rm{.0}} - {\rm{2 = }} - {\rm{2; c = 2}} - {\rm{0 = 2; d = 4}} - {\rm{3}}{\rm{.0 = 4}}\]
Vậy \[{\rm{P = }}{{\rm{a}}^{\rm{3}}}{\rm{ + }}{{\rm{b}}^{\rm{3}}}{\rm{ + }}{{\rm{c}}^{\rm{3}}}{\rm{ + }}{{\rm{d}}^{\rm{3}}}{\rm{ = }}{\left( { - {\rm{2}}} \right)^{\rm{3}}}{\rm{ + }}{{\rm{0}}^{\rm{3}}}{\rm{ + }}{{\rm{2}}^{\rm{3}}}{\rm{ + }}{{\rm{4}}^{\rm{3}}}{\rm{ = 64}}\]
Với b = 2 ta có: \[{\rm{a = 3}}{\rm{.2}} - {\rm{2 = 4; c = 2}} - {\rm{2 = 0; d = 4}} - {\rm{3}}{\rm{.2 = }} - {\rm{2}}\]
Vậy\[{\rm{P = }}{{\rm{a}}^{\rm{3}}}{\rm{ + }}{{\rm{b}}^{\rm{3}}}{\rm{ + }}{{\rm{c}}^{\rm{3}}}{\rm{ + }}{{\rm{d}}^{\rm{3}}}{\rm{ = }}{{\rm{4}}^{\rm{3}}}{\rm{ + }}{{\rm{2}}^{\rm{3}}}{\rm{ + }}{{\rm{0}}^{\rm{3}}}{\rm{ + }}{\left( { - {\rm{2}}} \right)^{\rm{3}}}{\rm{ = 64}}\]
Đáp án cần chọn là: D
Câu 2
A. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{u}}_{\rm{1}}}{\rm{.}}{{\rm{d}}^{\rm{n}}}\]
B. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{u}}_{\rm{1}}}{\rm{.}}{{\rm{d}}^{{\rm{n}} - {\rm{1}}}}\]
C. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{u}}_{\rm{1}}}{\rm{ + nd}}\]
D. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}\]
Lời giải
Theo định lí ta có công thức số hạng tổng quát của cấp số cộng là: \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}\]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. −115.
B. −130.
C. 115.
D. 130.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Cho cấp số cộng (un), biết \[{{\rm{u}}_{{\rm{1 }}}}{\rm{ = }} - {\rm{5, d = 3}}\]. Chọn đáp án đúng.
A. \[{{\rm{u}}_{{\rm{15}}}}{\rm{ = 34}}\]
B. \[{{\rm{u}}_{{\rm{15}}}}{\rm{ = 37}}\]
C. \[{{\rm{u}}_{{\rm{13}}}}{\rm{ = 34}}\]
D. \[{{\rm{u}}_{{\rm{13}}}}{\rm{ = 37}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 2
B. \(\frac{1}{2}\)
C.\(\frac{2}{3}\)
D. 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 26o.
B. 162o.
C. 60o.
D. 126o.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.