Câu hỏi:

31/01/2025 86 Lưu

Ông Sơn trồng cây trên một mãnh đất hình tam giác theo quy luật: ở hàng thứ nhất có 1 cây, ở hàng thứ hai có 2 cây, ở hàng thứ ba có 3 cây,…, ở hàng thứ n có n cây. Biết rằng ông đã trồng hết 11325 cây. Hỏi số hàng cây được trồng theo cách trên là bao nhiêu?

A. 148.

B. 150.

C. 152.

D. 154.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề bài ta có dãy số chỉ số cây trồng mỗi hàng là một cấp số cộng có số hạng đầu u1 = 1 và công sai d = 1.

Ông Sơn đã trồng hết 11325 cây nên ta có:

\[{S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2} \Leftrightarrow 11325 = \frac{{n\left[ {2.1 + \left( {n - 1} \right).1} \right]}}{2} \Leftrightarrow n\left( {2 + n - 1} \right) = 22650\]

\( \Leftrightarrow n\left( {n + 1} \right) = 22650 \Leftrightarrow {n^2} + n - 22650 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = - 151\left( L \right)}\\{n = 150\left( {TM} \right)}\end{array}} \right.\)

Vậy có 150 hàng cây được trồng theo cách trên.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì ba số thực a, b, c là ba số hạng liên tiếp của một cấp số cộng nên ta có:

\[{\rm{b = }}\frac{{{\rm{a + c}}}}{{\rm{2}}} \Leftrightarrow {\rm{a + c = 2b}} \Leftrightarrow {\rm{c = 2b}} - {\rm{a}}\left( 1 \right)\]

Vì ba số thực b, c, d là ba số hạng liên tiếp của một cấp số cộng nên ta có:

\[{\rm{c = }}\frac{{{\rm{b + d}}}}{{\rm{2}}} \Leftrightarrow {\rm{b + d = 2c}} \Leftrightarrow {\rm{d = 2c}} - {\rm{b = 2}}\left( {{\rm{2b}} - {\rm{a}}} \right) - {\rm{b = 4b}} - {\rm{2a}} - {\rm{b = 3b}} - {\rm{2a}}\left( {\rm{2}} \right)\]

Tổng của bốn số thực a, b, c, d bằng 4 nên ta có:

\[{\rm{a + b + c + d = 4}} \Leftrightarrow {\rm{a + b + }}\left( {{\rm{2b}} - {\rm{a}}} \right){\rm{ + }}\left( {{\rm{3b}} - {\rm{2a}}} \right){\rm{ = 4}}\]

\[ \Leftrightarrow {\rm{6b}} - {\rm{2a = 4}} \Leftrightarrow {\rm{3b}} - {\rm{a = 2}} \Leftrightarrow {\rm{a = 3b}} - {\rm{2}}\]

Thế a = 3b – 2 vào (1) ta được: \[{\rm{c = 2b}} - \left( {{\rm{3b}} - {\rm{2}}} \right){\rm{ = 2}} - {\rm{b}}\]

Thế a = 3b – 2 vào (2) ta được: \[{\rm{d = 3b}} - {\rm{2}}\left( {{\rm{3b}} - {\rm{2}}} \right){\rm{ = 3b}} - {\rm{6b + 4 = 4}} - {\rm{3b}}\]

Tổng các bình phương của bốn số thực a, b, c, d bằng 24 nên ta có:

\[{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}{\rm{ + }}{{\rm{c}}^{\rm{2}}}{\rm{ + }}{{\rm{d}}^{\rm{2}}}{\rm{ = 24}} \Leftrightarrow {\left( {{\rm{3b}} - {\rm{2}}} \right)^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}{\rm{ + }}{\left( {{\rm{2}} - {\rm{b}}} \right)^{\rm{2}}}{\rm{ + }}{\left( {{\rm{4}} - {\rm{3b}}} \right)^2}{\rm{ = }}24\]

\[ \Leftrightarrow 9{b^2} - 12b + 4 + {b^2} + 4 - 4b + {b^2} + 16 - 24b + 9{b^2}{\rm{ = }}24\]

\[ \Leftrightarrow 20{b^2} - 40b\,{\rm{ = }}0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{\rm{b = 0}}}\\{{\rm{b = 2}}}\end{array}} \right.\]

Với b = 0 ta có: \[{\rm{a = 3}}{\rm{.0}} - {\rm{2 = }} - {\rm{2; c = 2}} - {\rm{0 = 2; d = 4}} - {\rm{3}}{\rm{.0 = 4}}\]

Vậy \[{\rm{P = }}{{\rm{a}}^{\rm{3}}}{\rm{ + }}{{\rm{b}}^{\rm{3}}}{\rm{ + }}{{\rm{c}}^{\rm{3}}}{\rm{ + }}{{\rm{d}}^{\rm{3}}}{\rm{ = }}{\left( { - {\rm{2}}} \right)^{\rm{3}}}{\rm{ + }}{{\rm{0}}^{\rm{3}}}{\rm{ + }}{{\rm{2}}^{\rm{3}}}{\rm{ + }}{{\rm{4}}^{\rm{3}}}{\rm{ = 64}}\]

Với b = 2 ta có: \[{\rm{a = 3}}{\rm{.2}} - {\rm{2 = 4; c = 2}} - {\rm{2 = 0; d = 4}} - {\rm{3}}{\rm{.2 = }} - {\rm{2}}\]

Vậy\[{\rm{P = }}{{\rm{a}}^{\rm{3}}}{\rm{ + }}{{\rm{b}}^{\rm{3}}}{\rm{ + }}{{\rm{c}}^{\rm{3}}}{\rm{ + }}{{\rm{d}}^{\rm{3}}}{\rm{ = }}{{\rm{4}}^{\rm{3}}}{\rm{ + }}{{\rm{2}}^{\rm{3}}}{\rm{ + }}{{\rm{0}}^{\rm{3}}}{\rm{ + }}{\left( { - {\rm{2}}} \right)^{\rm{3}}}{\rm{ = 64}}\]

Đáp án cần chọn là: D

Câu 2

A. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{u}}_{\rm{1}}}{\rm{.}}{{\rm{d}}^{\rm{n}}}\]

B. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{u}}_{\rm{1}}}{\rm{.}}{{\rm{d}}^{{\rm{n}} - {\rm{1}}}}\]

C. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{u}}_{\rm{1}}}{\rm{ + nd}}\]

D. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}\]

Lời giải

Theo định lí ta có công thức số hạng tổng quát của cấp số cộng là: \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}\]

Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{{\rm{u}}_{{\rm{15}}}}{\rm{ = 34}}\]

B. \[{{\rm{u}}_{{\rm{15}}}}{\rm{ = 37}}\]

C. \[{{\rm{u}}_{{\rm{13}}}}{\rm{ = 34}}\]

D. \[{{\rm{u}}_{{\rm{13}}}}{\rm{ = 37}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP