Câu hỏi:
10/02/2025 415
Cho hàm số \(f\left( x \right) = 20{x^2} + 56x + 36\).
a) Theo đề bài thì \(f\left( x \right)\) là một tam thức bậc hai.
b) Bất phương trình \(f\left( x \right) \ge 0 \Leftrightarrow \left( { - \infty ; - \frac{7}{5}} \right) \cup \left( { - 1; + \infty } \right)\).
c) Bất phương trình \(f\left( x \right) \le 0 \Leftrightarrow x \in \left( { - \frac{9}{5}; + \infty } \right)\).
d) Bất phương trình luôn nhận giá trị không âm với mọi \(x \in \mathbb{R}\).
Cho hàm số \(f\left( x \right) = 20{x^2} + 56x + 36\).
a) Theo đề bài thì \(f\left( x \right)\) là một tam thức bậc hai.
b) Bất phương trình \(f\left( x \right) \ge 0 \Leftrightarrow \left( { - \infty ; - \frac{7}{5}} \right) \cup \left( { - 1; + \infty } \right)\).
c) Bất phương trình \(f\left( x \right) \le 0 \Leftrightarrow x \in \left( { - \frac{9}{5}; + \infty } \right)\).
d) Bất phương trình luôn nhận giá trị không âm với mọi \(x \in \mathbb{R}\).
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) S
a) Ta có \(f\left( x \right) = 20{x^2} + 56x + 36\) là một tam thức bậc hai.
b) Ta có \(f\left( x \right) \ge 0 \Leftrightarrow 20{x^2} + 56x + 36 \ge 0 \Leftrightarrow \left( { - \infty ; - \frac{9}{5}} \right] \cup \left[ { - 1; + \infty } \right)\).
c) Ta có \(f\left( x \right) \le 0 \Leftrightarrow 20{x^2} + 56x + 36 \le 0 \Leftrightarrow \left[ { - \frac{9}{5}; - 1} \right]\).
d) Theo câu b, \(f\left( x \right) \ge 0 \Leftrightarrow \left( { - \infty ; - \frac{9}{5}} \right] \cup \left[ { - 1; + \infty } \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử người đó đứng ở vị trí \(B\left( { - 3;4} \right)\).
Ta có \(IB = \sqrt {{{\left( { - 3 + 2} \right)}^2} + {{\left( {4 - 1} \right)}^2}} = \sqrt {10} > R\).
Suy ra khoảng cách ngắn nhất để một người ở vị trí có tọa độ \(B\left( { - 3;4} \right)\) di chuyển được tới vùng phủ sóng là \(IB - R = \sqrt {10} - 3 \approx 0,16\) (km).
Lời giải
Trả lời: 5
Vì đường thẳng \(\Delta //d\) nên \(\Delta :2x - 4y + c = 0\left( {c \ne 3} \right)\).
Vì \(\Delta \) đi qua \(M\left( {1; - 2} \right)\) nên ta có \(2.1 - 4.\left( { - 2} \right) + c = 0 \Leftrightarrow c = - 10\).
Do đó \(\Delta :2x - 4y - 10 = 0 \Leftrightarrow x - 2y - 5 = 0\).
Suy ra \(a = 1;b = - 2\). Do đó \({a^2} + {b^2} = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.