Câu hỏi:
10/02/2025 1,965
Trong mặt phẳng tọa độ \(\left( {Oxy} \right)\), cho điểm \(M\left( {1; - 2} \right)\) và đường thẳng \(d:2x - 4y + 3 = 0\). Đường thẳng \(\Delta \) đi qua \(M\) và song song \(d\) có phương trình \(ax + by - 5 = 0\left( {a,b \in \mathbb{R}} \right)\). Tính giá trị biểu thức \({a^2} + {b^2}\).
Trong mặt phẳng tọa độ \(\left( {Oxy} \right)\), cho điểm \(M\left( {1; - 2} \right)\) và đường thẳng \(d:2x - 4y + 3 = 0\). Đường thẳng \(\Delta \) đi qua \(M\) và song song \(d\) có phương trình \(ax + by - 5 = 0\left( {a,b \in \mathbb{R}} \right)\). Tính giá trị biểu thức \({a^2} + {b^2}\).
Quảng cáo
Trả lời:
Trả lời: 5
Vì đường thẳng \(\Delta //d\) nên \(\Delta :2x - 4y + c = 0\left( {c \ne 3} \right)\).
Vì \(\Delta \) đi qua \(M\left( {1; - 2} \right)\) nên ta có \(2.1 - 4.\left( { - 2} \right) + c = 0 \Leftrightarrow c = - 10\).
Do đó \(\Delta :2x - 4y - 10 = 0 \Leftrightarrow x - 2y - 5 = 0\).
Suy ra \(a = 1;b = - 2\). Do đó \({a^2} + {b^2} = 5\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử người đó đứng ở vị trí \(B\left( { - 3;4} \right)\).
Ta có \(IB = \sqrt {{{\left( { - 3 + 2} \right)}^2} + {{\left( {4 - 1} \right)}^2}} = \sqrt {10} > R\).
Suy ra khoảng cách ngắn nhất để một người ở vị trí có tọa độ \(B\left( { - 3;4} \right)\) di chuyển được tới vùng phủ sóng là \(IB - R = \sqrt {10} - 3 \approx 0,16\) (km).
Lời giải
Xét \(\Delta AOC\) có \(A{C^2} = O{A^2} + O{C^2} - 2.OA.OC.\cos 120^\circ = 4 + {\left( {x + 1} \right)^2} + 2.\left( {x + 1} \right) = {x^2} + 4x + 7\).
Suy ra \(AC = \sqrt {{x^2} + 4x + 7} \).
Xét \(\Delta ABO\) có \(AB = \sqrt {O{A^2} - O{B^2}} = \sqrt {4 - {x^2}} \).
Vì \(AC = 2AB\) nên \(\sqrt {{x^2} + 4x + 7} = 2\sqrt {4 - {x^2}} \)
Bình phương 2 vế của phương trình trên ta được:
\({x^2} + 4x + 7 = 4\left( {4 - {x^2}} \right)\)\( \Leftrightarrow 5{x^2} + 4x - 9 = 0\)\( \Leftrightarrow x = 1\) hoặc \(x = - \frac{9}{5}\).
Thay lần lượt các giá trị của \(x\) vào phương trình ta thấy \(x = 1\) và \(x = - \frac{9}{5}\) đều là nghiệm của phương trình.
Vì \(x > 0\) nên \(x = 1\) thỏa mãn \(OB < OA\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.