Câu hỏi:

14/02/2025 163

Cho tam giác \(ABC\) vuông tại \(A\)\[AB = 6\,\,{\rm{cm}}\]\[AC = 8\,\,{\rm{cm}}.\] Đường phân giác của góc \(ABC\) cắt cạnh \(AC\) tại \(D.\) Từ \(C\) kẻ \(CE \bot BD\) tại \(E.\)

a) Tính độ dài \(BC\) và tỉ số \(\frac{{AD}}{{DC}}.\)

b) Chứng minh  Từ đó suy ra \(BD \cdot EC = AD \cdot BC.\)

c) Chứng minh \(\frac{{CD}}{{BC}} = \frac{{CE}}{{BE}}.\)

d) Gọi \(EH\) là đường cao \(\Delta EBC.\) Chứng minh \(CH \cdot HB = ED \cdot EB.\)

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Xét \(\Delta ABC\) vuông tại \(A,\) theo định lí Pytagore ta có: \(B{C^2} = A{B^2} + A{C^2} = {8^2} + {6^2} = 64 + 36 = 100\)

Suy ra \(BC = \sqrt {100} = 10{\rm{\;cm}}.\)

\(BD\) là tia phân giác của góc \(ABC\) nên suy ra:

\[\frac{{DA}}{{DC}} = \frac{{BA}}{{BC}} = \frac{6}{{10}} = \frac{3}{5}.\]

b) Theo đề bài, \(CE \bot BD\) tại \(E\) nên \(\widehat {BEC} = 90^\circ .\)

Xét \(\Delta ABD\)\(\Delta EBC\) có:

Cho tam giác ABC  vuông tại  A có AB = 6cm và AC = 8cm  Đường phân giác của góc  ABC cắt cạnh AC  tại  D  (ảnh 1)

\(\widehat {BAD} = \widehat {BEC} = 90^\circ \)\(\widehat {{B_1}} = \widehat {{B_2}}\) (vì \(BD\) là tia phân giác của góc \(ABC)\)

Do đó  (g.g).

Suy ra: \(\frac{{BD}}{{AD}} = \frac{{BC}}{{EC}}\) (tỉ số cạnh tương ứng).

Do đó \(BD \cdot EC = AD \cdot BC.\)

c) Từ \(\frac{{DA}}{{DC}} = \frac{{AB}}{{BC}}\) suy ra \(\frac{{CD}}{{BC}} = \frac{{AD}}{{AB}}\)\(\left( 1 \right)\)

 (câu b) nên \(\frac{{AD}}{{EC}} = \frac{{AB}}{{EB}},\) suy ra \(\frac{{AD}}{{AB}} = \frac{{EC}}{{EB}}\)\(\left( 2 \right)\)

Từ \(\left( 1 \right)\)\(\left( 2 \right)\) suy ra: \(\frac{{CD}}{{BC}} = \frac{{CE}}{{BE}}.\)

d) Tương tự câu b ta chứng minh được:

 (g.g) nên \(\frac{{CH}}{{CE}} = \frac{{CE}}{{CB}}.\)

Suy ra \(CH \cdot CB = C{E^2}\,\,\left( 3 \right)\)

 (g.g) nên \(\frac{{ED}}{{EC}} = \frac{{CE}}{{BE}}.\)

Suy ra \(ED \cdot EB = C{E^2}\left( 4 \right)\)

Từ \(\left( 3 \right)\)\(\left( 4 \right)\) suy ra: \(CH \cdot HB = ED \cdot EB.\)

Cho tam giác ABC  vuông tại  A có AB = 6cm và AC = 8cm  Đường phân giác của góc  ABC cắt cạnh AC  tại  D  (ảnh 2)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chữ nhật \[ABCD\] và hình vuông \[EFGH\] như hình bên (các số đo trên hình tính theo centimet).

a) Viết phân thức biểu thị tỉ số diện tích hình vuông và diện tích hình chữ nhật \[ABCD.\]

Cho biết tử thức và mẫu thức của phân thức vừa tìm được.

b) Tính giá trị của phân thức đó tại \[x = 2\,;{\rm{ }}y = 8.\]
Cho hình chữ nhật \[ABCD\] và hình vuông \[EFGH\] như hình bên (các số đo trên hình tính theo centimet). (ảnh 1)

Xem đáp án » 14/02/2025 90

Câu 2:

Một tàu hỏa từ Hà Nội đi Thành phố Hồ Chí Minh. Sau 1 giờ 48 phút, một tàu hỏa khác khởi hành từ Nam Định cũng đi Thành phố Hồ Chí Minh với vận tốc nhỏ hơn vận tốc của tàu thứ nhất \[5{\rm{ km/h}}.\] Hai tàu gặp nhau tại một nhà ga sau 4 giờ 48 phút kể từ khi tàu thứ nhất khởi hành. Tính vận tốc của mỗi tàu, biết rằng ga Nam Định nằm trên đường từ Hà Nội đi Thành phố Hồ Chí Minh và cách ga Hà Nội 87 km.

Xem đáp án » 14/02/2025 30

Câu 3:

Cho biểu thức: \(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}.\)

a) Viết điều kiện xác định của biểu thức \[D.\]

b) Rút gọn biểu thức \(D.\)

c) Tính giá trị của biểu thức \[D\] biết \(\left( {2x - 1} \right)\left( {{x^2} + 1} \right) = 0.\)

Xem đáp án » 14/02/2025 24

Câu 4:

Một chiếc tàu thủy có mặt cắt dọc phần nổi trên mặt nước của thân tàu được mô tả ở hình bên dưới. Tính chu vi mặt cắt dọc nổi trên mặt nước của thân tàu đó (làm tròn kết quả đến hàng phần mười của mét).

Một chiếc tàu thủy có mặt cắt dọc phần nổi trên mặt nước của thân tàu được mô tả ở hình bên dưới. (ảnh 1)

Xem đáp án » 14/02/2025 24

Câu 5:

Giải các phương trình sau:

a) \(\frac{2}{3}x + 2\frac{1}{2} = 0\).  b) \(x - 4x + 2x - 29 = 4x + 1\).

c) \(\frac{{2x - 1}}{3} - \frac{{x + 7}}{4} = \frac{{5 - 3x}}{2}\).  d) \[2x\left( {x--1} \right) = {x^2} - 1.\]

Xem đáp án » 14/02/2025 19

Bình luận


Bình luận