Câu hỏi:

14/02/2025 690

Một chiếc tàu thủy có mặt cắt dọc phần nổi trên mặt nước của thân tàu được mô tả ở hình bên dưới. Tính chu vi mặt cắt dọc nổi trên mặt nước của thân tàu đó (làm tròn kết quả đến hàng phần mười của mét).

Một chiếc tàu thủy có mặt cắt dọc phần nổi trên mặt nước của thân tàu được mô tả ở hình bên dưới. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử mặt cắt dọc phần nổi trên mặt nước cả tàu thủy được mô tả như hình vẽ dưới đây:

Một chiếc tàu thủy có mặt cắt dọc phần nổi trên mặt nước của thân tàu được mô tả ở hình bên dưới. (ảnh 2)

• Do tam giác \[ABM\] vuông tại \(B,\) nên theo định lí Pythagore ta có:

\[A{M^2} = A{B^2} + B{M^2} = 5,{6^2} + 8,{4^2} = 31,36 + 70,56 = 101,92\].

Suy ra \(AB = \sqrt {101,92} \,\,\left( {\rm{m}} \right).\)

• Do tam giác \(CDH\) vuông tại \(H,\) nên theo định lí Pythagore ta có:

\[C{D^2} = C{H^2} + D{H^2} = 16,{2^2} + 10,{8^2} = 262,44 + 116,64 = 379,08\]

Suy ra \(CD = \sqrt {379,08} \,\,\left( {\rm{m}} \right)\).

• Ta có \[AI = BH = BM + MC + CH = 8,4 + 24 + 16,2 = 48,6\] (m).

            \[DI = DH--HI = DH--AB = 10,8--5,6 = 5,2\] (m).

Do tam giác \[ADI\] vuông tại \[I,\] nên theo định lí Pythagore ta có:

\[A{D^2} = A{I^2} + D{I^2} = 48,{6^2} + 5,{2^2} = 2{\rm{ }}361,96 + 27,04 = 2{\rm{ }}389\]

Suy ra \(AD = \sqrt {2\,389} \,\,\left( {\rm{m}} \right)\).

• Chu vi tứ giác \(AMCD\) là:

\[AM + MC + CD + DA = \]\(\sqrt {101,92} + 24 + \sqrt {379,08} + \sqrt {2389} \approx 102,4\) (m).

Vậy chu vi mặt cắt dọc phần nổi trên mặt nước của chiếc tàu thuỷ đó khoảng \[102,4{\rm{\;m}}{\rm{.}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét \(\Delta ABC\) vuông tại \(A,\) theo định lí Pytagore ta có: \(B{C^2} = A{B^2} + A{C^2} = {8^2} + {6^2} = 64 + 36 = 100\)

Suy ra \(BC = \sqrt {100} = 10{\rm{\;cm}}.\)

\(BD\) là tia phân giác của góc \(ABC\) nên suy ra:

\[\frac{{DA}}{{DC}} = \frac{{BA}}{{BC}} = \frac{6}{{10}} = \frac{3}{5}.\]

b) Theo đề bài, \(CE \bot BD\) tại \(E\) nên \(\widehat {BEC} = 90^\circ .\)

Xét \(\Delta ABD\)\(\Delta EBC\) có:

Cho tam giác ABC  vuông tại  A có AB = 6cm và AC = 8cm  Đường phân giác của góc  ABC cắt cạnh AC  tại  D  (ảnh 1)

\(\widehat {BAD} = \widehat {BEC} = 90^\circ \)\(\widehat {{B_1}} = \widehat {{B_2}}\) (vì \(BD\) là tia phân giác của góc \(ABC)\)

Do đó  (g.g).

Suy ra: \(\frac{{BD}}{{AD}} = \frac{{BC}}{{EC}}\) (tỉ số cạnh tương ứng).

Do đó \(BD \cdot EC = AD \cdot BC.\)

c) Từ \(\frac{{DA}}{{DC}} = \frac{{AB}}{{BC}}\) suy ra \(\frac{{CD}}{{BC}} = \frac{{AD}}{{AB}}\)\(\left( 1 \right)\)

 (câu b) nên \(\frac{{AD}}{{EC}} = \frac{{AB}}{{EB}},\) suy ra \(\frac{{AD}}{{AB}} = \frac{{EC}}{{EB}}\)\(\left( 2 \right)\)

Từ \(\left( 1 \right)\)\(\left( 2 \right)\) suy ra: \(\frac{{CD}}{{BC}} = \frac{{CE}}{{BE}}.\)

d) Tương tự câu b ta chứng minh được:

 (g.g) nên \(\frac{{CH}}{{CE}} = \frac{{CE}}{{CB}}.\)

Suy ra \(CH \cdot CB = C{E^2}\,\,\left( 3 \right)\)

 (g.g) nên \(\frac{{ED}}{{EC}} = \frac{{CE}}{{BE}}.\)

Suy ra \(ED \cdot EB = C{E^2}\left( 4 \right)\)

Từ \(\left( 3 \right)\)\(\left( 4 \right)\) suy ra: \(CH \cdot HB = ED \cdot EB.\)

Cho tam giác ABC  vuông tại  A có AB = 6cm và AC = 8cm  Đường phân giác của góc  ABC cắt cạnh AC  tại  D  (ảnh 2)

Lời giải

Gọi vận tốc của tàu hỏa thứ nhất là \(x\) (km/h) \(\left( {x > 0} \right).\)

Vận tốc của tàu hỏa thứ hai là \(x - 5\) (km/h).

Sau 4 giờ 48 phút \( = 4,8\) giờ thì tàu thứ nhất đi được quãng đường là: \(4,8x\) (km).

Vì tàu hỏa thứ hai khởi hành sau tàu hỏa thứ nhất 1 giờ 48 phút \( = 1,8\) giờ nên thời gian tàu hỏa thứ hai đã đi là \(4,8 - 1,8 = 3\) (giờ). Khi đó quãng đường tàu hỏa thứ hai đã đi là: \(3\left( {x - 5} \right)\) (km).

Vì ga Nam Định nằm trên đường từ Hà Nội đi TP Hồ Chí Minh và cách ga Hà Nội 87 km nên ta có phương trình:

\(4,8x = 3\left( {x - 5} \right) + 87\)

\(4,8x = 3x - 15 + 87\)

\(4,8x - 3x = 87 - 15\)

\(1,8x = 72\)

\(x = 40\) (thỏa mãn).

Vậy vận tốc của tàu hỏa thứ nhất là \(40\) km/h, vận tốc của tàu hỏa thứ hai là \(40 - 5 = 35\,\,\left( {{\rm{km/}}\,{\rm{h}}} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP