Câu hỏi:

10/03/2025 688 Lưu

Gieo đồng thời 2 con xúc xắc cân đối đồng chất.

a) Số phần tử của không gian mẫu là 36.

b) Số phần tử của biến cố \(A\): “Số chấm xuất hiện trên hai con xúc xắc là như nhau” bằng 3.

c) Xác suất của biến cố \(B\): “Ít nhất một con xúc xắc xuất hiện mặt 6 chấm” là \(\frac{{13}}{{36}}\).

d) Xác suất của biến cố \(C:\) “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2” là \(\frac{2}{9}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Đ, b) S, c) S, d) Đ

a) \(n\left( \Omega \right) = 6.6 = 36\).

b) Có \(A = \left\{ {\left( {1;1} \right);\left( {2;2} \right);\left( {3;3} \right);\left( {4;4} \right);\left( {5;5} \right);\left( {6;6} \right)} \right\}\). Suy ra \(n\left( A \right) = 6\).

c) Gọi biến cố \(\overline B \): “Không xuất hiện mặt 6 chấm”.

Ta có \(n\left( {\overline B } \right) = 5.5 = 25\). Suy ra \(P\left( {\overline B } \right) = \frac{{25}}{{36}}\).

Do đó \(P\left( B \right) = 1 - P\left( {\overline B } \right) = \frac{{11}}{{36}}\).

d) Ta có \(C = \left\{ {\left( {1;3} \right);\left( {2;4} \right);\left( {3;5} \right);\left( {4;6} \right);\left( {6;4} \right);\left( {5;3} \right);\left( {4;2} \right);\left( {3;1} \right)} \right\}\).

Suy ra \(n\left( C \right) = 8\). Do đó \(P\left( C \right) = \frac{8}{{36}} = \frac{2}{9}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(P\left( \emptyset \right) = 0\).

B. \(0 < P\left( A \right) < 1\).

C. \(P\left( \Omega \right) = 1\).

D. \(P\left( A \right) + P\left( {\overline A } \right) = 1\).

Lời giải

Đáp án đúng là: B

\(0 \le P\left( A \right) \le 1\).

Câu 2

A. \(x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\).

B. \(x \in \left( {0;2} \right)\).

C. \(x \in \mathbb{R}\).

D. \(x \in \left( {2; + \infty } \right)\).

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP