Câu hỏi:
10/03/2025 484
PHẦN II. TỰ LUẬN
Tính tổng tất cả các hệ số trong khai triển nhị thức Newton \({\left( {x + 2y} \right)^4}\).
Quảng cáo
Trả lời:
Hướng dẫn giải
\({\left( {x + 2y} \right)^4} = {x^4} + 4.{x^3}.2y + 6.{x^2}.{\left( {2y} \right)^2} + 4.x.{\left( {2y} \right)^3} + {\left( {2y} \right)^4}\)
\( = {x^4} + 8{x^3}y + 24{x^2}{y^2} + 32x{y^3} + 16{y^4}\).
Do đó tổng tất cả các hệ số là: \(1 + 8 + 24 + 32 + 16 = 81\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
\(0 \le P\left( A \right) \le 1\).
Lời giải
Hướng dẫn giải
Trong mặt phẳng \(\left( {Oxy} \right)\). Giả sử phương trình chính tắc của elip \(\left( E \right)\) là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).
Vì \(\left( E \right)\) đi qua \({A_2}\left( {3;0} \right),{B_1}\left( {0;2} \right)\) nên ta có \(\left\{ \begin{array}{l}\frac{9}{{{a^2}}} = 1\\\frac{4}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 9\\{b^2} = 4\end{array} \right.\).
Vậy \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\).
Tại điểm cách điểm chính giữa \(O\) của đế ô thoáng \(60\)cm tương ứng với 2 đơn vị trên mặt phẳng tọa độ.
Suy ra chiều cao của ô thoáng là \(\frac{{{2^2}}}{9} + \frac{{{h^2}}}{4} = 1\)\( \Rightarrow h = \frac{{2\sqrt 5 }}{3}\) tương ứng với \(20\sqrt 5 \) cm trên thực tế.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.