Câu hỏi:

10/03/2025 153

C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 15 đến câu 18.

Có bao nhiêu tam thức bậc hai luôn mang dấu dương trong các tam thức bậc hai sau \(f\left( x \right) = {x^2} - 2x + 5;f\left( x \right) = {x^2} - 6x + 5;f\left( x \right) = {x^2} - 10x + 9;f\left( x \right) = {x^2} - 4x + 3\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Trả lời: 1

Xét tam thức \(f\left( x \right) = {x^2} - 2x + 5\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = {\left( { - 2} \right)^2} - 4.1.5 = - 16 < 0\end{array} \right.\). Do đó \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).</>

Xét tam thức \(f\left( x \right) = {x^2} - 6x + 5\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = {\left( { - 6} \right)^2} - 4.1.5 = 16 > 0\end{array} \right.\).

Do đó \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {5; + \infty } \right)\).

Xét tam thức \(f\left( x \right) = {x^2} - 10x + 9\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = 64\end{array} \right.\). Do đó \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {9; + \infty } \right)\).

Xét tam thức \(f\left( x \right) = {x^2} - 4x + 3\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = 4\end{array} \right.\). Do đó \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

\(0 \le P\left( A \right) \le 1\).

Lời giải

Hướng dẫn giải

Trong mặt phẳng \(\left( {Oxy} \right)\). Giả sử phương trình chính tắc của elip \(\left( E \right)\) là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Vì \(\left( E \right)\) đi qua \({A_2}\left( {3;0} \right),{B_1}\left( {0;2} \right)\) nên ta có \(\left\{ \begin{array}{l}\frac{9}{{{a^2}}} = 1\\\frac{4}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 9\\{b^2} = 4\end{array} \right.\).

Vậy \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\).

Tại điểm cách điểm chính giữa \(O\) của đế ô thoáng \(60\)cm tương ứng với 2 đơn vị trên mặt phẳng tọa độ.

Suy ra chiều cao của ô thoáng là \(\frac{{{2^2}}}{9} + \frac{{{h^2}}}{4} = 1\)\( \Rightarrow h = \frac{{2\sqrt 5 }}{3}\) tương ứng với \(20\sqrt 5 \) cm trên thực tế.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP