Câu hỏi:

10/03/2025 139

C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 15 đến câu 18.

Có bao nhiêu tam thức bậc hai luôn mang dấu dương trong các tam thức bậc hai sau \(f\left( x \right) = {x^2} - 2x + 5;f\left( x \right) = {x^2} - 6x + 5;f\left( x \right) = {x^2} - 10x + 9;f\left( x \right) = {x^2} - 4x + 3\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Trả lời: 1

Xét tam thức \(f\left( x \right) = {x^2} - 2x + 5\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = {\left( { - 2} \right)^2} - 4.1.5 = - 16 < 0\end{array} \right.\). Do đó \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).</>

Xét tam thức \(f\left( x \right) = {x^2} - 6x + 5\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = {\left( { - 6} \right)^2} - 4.1.5 = 16 > 0\end{array} \right.\).

Do đó \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {5; + \infty } \right)\).

Xét tam thức \(f\left( x \right) = {x^2} - 10x + 9\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = 64\end{array} \right.\). Do đó \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {9; + \infty } \right)\).

Xét tam thức \(f\left( x \right) = {x^2} - 4x + 3\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = 4\end{array} \right.\). Do đó \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Xét \(A\) là biến cố liên quan đến phép thử T với không gian mẫu là \(\Omega \). Mệnh đề nào dưới đây sai?

Lời giải

Đáp án đúng là: B

\(0 \le P\left( A \right) \le 1\).

Lời giải

Hướng dẫn giải

Trong mặt phẳng \(\left( {Oxy} \right)\). Giả sử phương trình chính tắc của elip \(\left( E \right)\) là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Vì \(\left( E \right)\) đi qua \({A_2}\left( {3;0} \right),{B_1}\left( {0;2} \right)\) nên ta có \(\left\{ \begin{array}{l}\frac{9}{{{a^2}}} = 1\\\frac{4}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 9\\{b^2} = 4\end{array} \right.\).

Vậy \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\).

Tại điểm cách điểm chính giữa \(O\) của đế ô thoáng \(60\)cm tương ứng với 2 đơn vị trên mặt phẳng tọa độ.

Suy ra chiều cao của ô thoáng là \(\frac{{{2^2}}}{9} + \frac{{{h^2}}}{4} = 1\)\( \Rightarrow h = \frac{{2\sqrt 5 }}{3}\) tương ứng với \(20\sqrt 5 \) cm trên thực tế.

Câu 3

Cho đồ thị của hàm số bậc hai \(f\left( x \right)\) như hình vẽ

Cho đồ thị của hàm số bậc hai   f ( x )   như hình vẽ    Nghiệm của bất phương trình   f ( x ) > 0   là (ảnh 1)

Nghiệm của bất phương trình \(f\left( x \right) > 0\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay