Câu hỏi:

10/03/2025 222 Lưu

C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 15 đến câu 18.

Có bao nhiêu tam thức bậc hai luôn mang dấu dương trong các tam thức bậc hai sau \(f\left( x \right) = {x^2} - 2x + 5;f\left( x \right) = {x^2} - 6x + 5;f\left( x \right) = {x^2} - 10x + 9;f\left( x \right) = {x^2} - 4x + 3\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Trả lời: 1

Xét tam thức \(f\left( x \right) = {x^2} - 2x + 5\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = {\left( { - 2} \right)^2} - 4.1.5 = - 16 < 0\end{array} \right.\). Do đó \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).</>

Xét tam thức \(f\left( x \right) = {x^2} - 6x + 5\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = {\left( { - 6} \right)^2} - 4.1.5 = 16 > 0\end{array} \right.\).

Do đó \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {5; + \infty } \right)\).

Xét tam thức \(f\left( x \right) = {x^2} - 10x + 9\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = 64\end{array} \right.\). Do đó \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {9; + \infty } \right)\).

Xét tam thức \(f\left( x \right) = {x^2} - 4x + 3\) có \(\left\{ \begin{array}{l}a = 1\\\Delta = 4\end{array} \right.\). Do đó \(f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(P\left( \emptyset \right) = 0\).

B. \(0 < P\left( A \right) < 1\).

C. \(P\left( \Omega \right) = 1\).

D. \(P\left( A \right) + P\left( {\overline A } \right) = 1\).

Lời giải

Đáp án đúng là: B

\(0 \le P\left( A \right) \le 1\).

Câu 2

A. \(x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\).

B. \(x \in \left( {0;2} \right)\).

C. \(x \in \mathbb{R}\).

D. \(x \in \left( {2; + \infty } \right)\).

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP