Câu hỏi:

10/03/2025 246 Lưu

B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 13 đến câu 14. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Trong mặt phẳng tọa độ \(Oxy\), cho hai đường thẳng \({\Delta _1}:x - y + 6 = 0\), \({\Delta _2}:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + t\end{array} \right.\).

a) Đường thẳng \({\Delta _1}\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1; - 1} \right)\).

b) Đường thẳng \({\Delta _2}\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {2;1} \right)\).

c) Hai đường thẳng \({\Delta _1},{\Delta _2}\) cắt nhau tại điểm có hoành độ bằng \( - 7\).

d) \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{1}{{\sqrt {10} }}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Đ, b) S, c) Đ, d) S

a) Đường thẳng \({\Delta _1}\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1; - 1} \right)\).

b) Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {2;1} \right)\).

c) Tọa độ giao điểm của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) là nghiệm của hệ

\(\left\{ \begin{array}{l}x - y + 6 = 0\\x = 1 + 2t\\y = 3 + t\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 + 2t - 3 - t + 6 = 0\\x = 1 + 2t\\y = 3 + t\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t = - 4\\x = - 7\\y = - 1\end{array} \right.\).

Vậy hoành độ giao điểm là \( - 7\).

d) Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {2;1} \right)\) nên nhận \(\overrightarrow {{n_2}} \left( { - 1;2} \right)\) làm vectơ pháp tuyến.

Ta có \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {1.\left( { - 1} \right) + \left( { - 1} \right).2} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {2^2}} }} = \frac{3}{{\sqrt {10} }}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Điều kiện: \(n \ge 2,n \in \mathbb{N}\).

Ta có \(C_n^1 + C_n^2 = 15\)\( \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 15\)\( \Leftrightarrow {n^2} + n - 30 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = 5\\n = - 6\end{array} \right.\)\( \Rightarrow n = 5\).

Với \(n = 5\) ta có \({\left( {x + \frac{2}{{{x^4}}}} \right)^5} = {x^5} + 5.{x^4}.\frac{2}{{{x^4}}} + 10.{x^3}.{\left( {\frac{2}{{{x^4}}}} \right)^2} + 10.{x^2}.{\left( {\frac{2}{{{x^4}}}} \right)^3} + 5.x.{\left( {\frac{2}{{{x^4}}}} \right)^4} + {\left( {\frac{2}{{{x^4}}}} \right)^5}\)

\( = {x^5} + 10 + \frac{{40}}{{{x^5}}} + \frac{{80}}{{{x^{10}}}} + \frac{{80}}{{{x^{15}}}} + \frac{{32}}{{{x^{20}}}}\).

Số hạng không chứa \(x\) trong khai triển trên là \(10\).

Lời giải

Hướng dẫn giải

Sắp xếp mẫu số liệu trên theo thứ tự tăng dần ta được: 7; 8; 11; 13; 15; 18; 19; 20; 22.

Ta có \({Q_1} = \frac{{8 + 11}}{2} = 9,5\); \({Q_3} = \frac{{19 + 20}}{2} = 19,5\).

Suy ra \({\Delta _Q} = {Q_3} - {Q_1} = 19,5 - 9,5 = 10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Gieo một con xúc xắc có 6 mặt giống nhau và quan sát mặt nào xuất hiện.

B. Chọn 1 bi từ trong một hộp kín đựng 12 bi đỏ, 5 bi xanh và quan sát xem bi được chọn là màu gì.

C. Viết ngẫu nhiên hai số tự nhiên lên mặt bảng và tính xem tổng của chúng là số chẵn hay số lẻ.

D. Chọn một bạn học sinh từ 20 học sinh có học lực giỏi và 22 học sinh có học lực khá của lớp 10A2 xem bạn được chọn có học lực khá hay giỏi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP