Câu hỏi:

10/03/2025 961

Trong mặt phẳng \(Oxy\), cho đường tròn \(\left( C \right):{x^2} + {y^2} - 8x - 6y = 0\) và đường thẳng \(\Delta :x - 2y + 1 = 0\). Khi đó

a) Đường tròn \(\left( C \right)\) có tâm \(I\left( {4;3} \right);R = 5\).

b) Điểm \(M\left( {1;1} \right) \notin \Delta \).

c) Đường thẳng \(d\) song song với \(\Delta \) có 1 vectơ pháp tuyến bằng \(\overrightarrow n = \left( { - 1;2} \right)\).

d) Có hai đường thẳng tiếp tuyến của đường tròn \(\left( C \right)\) mà song song với \(\Delta \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Đ, b) S, c) Đ, d) Đ

a) \({x^2} + {y^2} - 8x - 6y = 0\)\( \Leftrightarrow {\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Suy ra đường tròn \(\left( C \right)\) có tâm \(I\left( {4;3} \right);R = 5\).

b) Thay tọa độ điểm \(M\) vào phương trình đường thẳng \(\Delta :x - 2y + 1 = 0\) ta được:

\(1 - 2.1 + 1 = 0\) (đúng). Do đó \(M\left( {1;1} \right) \in \Delta \).

c) Đường thẳng \(\Delta \) có một vectơ pháp tuyến là \[\overrightarrow {{n_1}} = \left( {1; - 2} \right) = - \left( { - 1;2} \right) = - \overrightarrow n \].

Suy ra \(\overrightarrow n \) cũng là vectơ pháp tuyến của đường thẳng \(\Delta \).

Mà \(d//\Delta \) nên \(\overrightarrow n \) là một vectơ pháp tuyến của \(d\).

d) Vì tiếp tuyến \(\Delta '\) của \(\left( C \right)\) song song với \(\Delta \) nên \(\Delta '\) có dạng \(x - 2y + c = 0\left( {c \ne 1} \right)\).

Vì \(d\left( {I,\Delta '} \right) = R\)\( \Leftrightarrow \frac{{\left| {4 - 2.3 + c} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} }} = 5\)\( \Leftrightarrow \left| { - 2 + c} \right| = 5\sqrt 5 \)

\( \Leftrightarrow \left[ \begin{array}{l} - 2 + c = 5\sqrt 5 \\ - 2 + c = - 5\sqrt 5 \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 5\sqrt 5 + 2\\c = - 5\sqrt 5 + 2\end{array} \right.\) (thoảm mãn).

Vậy có hai đường thẳng tiếp tuyến của đường tròn \(\left( C \right)\) mà song song với \(\Delta \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Giả sử đường tròn tác động \(\left( C \right)\) có phương trình: \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(I\left( {a;b} \right)\).

Vì \(\left( C \right)\) đi qua hai điểm \(K\left( { - 3;10} \right)\) và \(N\left( {8;0} \right)\) nên ta có \(\left\{ \begin{array}{l}6a - 20b + c = - 109\\ - 16a + c = - 64\end{array} \right.\) (1).

Lại có \(IG = 4\sqrt {10} \) nên \({\left( {9 - a} \right)^2} + {\left( { - \frac{{17}}{4} - b} \right)^2} = 160\) (2).

Từ \(\left\{ \begin{array}{l}6a - 20b + c = - 109\\ - 16a + c = - 64\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{c + 64}}{{16}}\\b = \frac{{11c}}{{160}} + \frac{{133}}{{20}}\end{array} \right.\) thay vào (2), ta được

\[{\left( {9 - \frac{{c + 64}}{{16}}} \right)^2} + {\left( { - \frac{{17}}{4} - \frac{{11c}}{{160}} - \frac{{133}}{{20}}} \right)^2} = 160\]\( \Leftrightarrow {\left( {5 - \frac{c}{{16}}} \right)^2} + {\left( {\frac{{109}}{{10}} + \frac{{11c}}{{160}}} \right)^2} = 160\)

\( \Leftrightarrow 25 - \frac{{10}}{{16}}c + \frac{{{c^2}}}{{256}} + \frac{{11881}}{{100}} + \frac{{1199}}{{800}}c + \frac{{121}}{{25600}}{c^2} = 160\)\( \Leftrightarrow \frac{{221}}{{25600}}{c^2} + \frac{{699}}{{800}}c - \frac{{1619}}{{100}} = 0\)

\( \Leftrightarrow c = 16\) hoặc \(c = \frac{{ - 25904}}{{221}}\).

Vì \(I\) có hoành độ dương nên \(c = 16\). Suy ra \(\left\{ \begin{array}{l}a = 5\\b = \frac{{31}}{4}\end{array} \right.\).

Do đó bán kính của đường tròn \(\left( C \right)\) là \(R = \sqrt {{5^2} + {{\left( {\frac{{31}}{4}} \right)}^2} - 16} \approx 8,31\) km.

Lời giải

Hướng dẫn giải

Trả lời: 6

Gọi cặp số \(\left( {x;y} \right)\) là số chấm xuất hiện ở hai lần gieo.

Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”.

Các kết quả của biến cố A là: \(\left\{ {\left( {1;1} \right);\left( {2;2} \right);\left( {3;3} \right);\left( {4;4} \right);\left( {5;5} \right);\left( {6;6} \right)} \right\}\).

Suy ra \(n\left( A \right) = 6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Khoảng cách giữa hai đường thẳng \({d_1}: - x + \sqrt 3 y - 1 = 0\) và \({d_2}:\sqrt 3 x - 3y = 0\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay