Câu 1-2. Một cổng chào được thiết kế theo hình parabol là một phần của đồ thị hàm số Khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\)
a) Tính hoành độ của hai điểm \(A,\,\,B\).
Câu 1-2. Một cổng chào được thiết kế theo hình parabol là một phần của đồ thị hàm số Khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\)
a) Tính hoành độ của hai điểm \(A,\,\,B\).
Quảng cáo
Trả lời:
Xét đồ thị hàm số \(y = - \frac{{{x^2}}}{2}\).
a) Ta có \(\frac{{AB}}{2} = 4\).
Vậy hoành độ của \(A\) và \(B\) thứ tự là \( - 4\) và \(4\).
Câu hỏi cùng đoạn
Câu 2:
b) Tính chiều cao của cổng.
b) Tính chiều cao của cổng.
b) Thay \(x = 4\) vào công thức \(y = - \frac{{{x^2}}}{2}\), ta có: \(y = - {\frac{4}{2}^2}\) nên \(y = - 8\).
Vậy chiều cao của cổng là \(\left| {\, - 8\,} \right| = 8\,\,\left( {\rm{m}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Tam giác \(ABC\) đều nên \(AB = AC\). Do đó \(C\) thuộc đường tròn \(\left( {A\,;\,\,AB} \right)\).
Xét đường tròn \(\left( {A\,;\,\,AB} \right)\), ta có: \(\widehat {BAC} = 60^\circ \) nên
Khi đó điểm \(B\) biến thành điểm \(C\) qua phép quay thuận chiều \(60^\circ \) tâm \(A\).b) Ta có: .
Khi đó điểm \({\rm{B}}\) biến thành điểm \({\rm{C}}\) qua phép quay ngược chiếu \(300^\circ \) tâm \({\rm{A}}\).
Lời giải
a) Ta có bảng sau:
|
Lần 2 Lần 1 |
1 |
2 |
3 |
4 |
|
1 |
(1, 1) |
(1, 2) |
(1, 3) |
(1, 4) |
|
2 |
(2, 1) |
(2, 2) |
(2, 3) |
(2, 4) |
|
3 |
(3, 1) |
(3, 2) |
(3, 3) |
(3, 4) |
|
4 |
(4, 1) |
(4, 2) |
(4, 3) |
(4, 4) |
Không gian mẫu là:
\[\Omega = \left\{ {\left( {1\,,\,\,1} \right)\,;\,\,\left( {1\,,\,\,2} \right)\,;\,\,\left( {1\,,\,\,3} \right)\,;\,\,\left( {1\,,\,\,4} \right)\,;\,\,\left( {2\,,\,\,1} \right)\,;\,\,\left( {2\,,\,\,2} \right);{\rm{ }}\left( {2\,,\,\,3} \right);{\rm{ }}\left( {2\,,\,\,4} \right);{\rm{ }}\left( {3\,,\,\,1} \right)\,;\,\,\left( {3\,,\,\,2} \right)} \right.\,;\,\,\left( {3\,,\,\,3} \right)\,;\,\,\left( {3\,,\,\,4} \right)\,;{\rm{ }}\] \[\left. {\left( {4\,,\,\,1} \right);\,\,\left( {4\,,\,\,2} \right);\,\,\left( {4\,,\,\,3} \right);\,\,\left( {4\,,\,\,4} \right)} \right\}.\]
Do đó, không gian mẫu có 16 phần tử.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.