Câu hỏi:

12/04/2025 197

Cho tam giác \(ABC\) đều như hình vẽ. Điểm \(B\) biến thành điểm nào?

• Phép phép quay thuận chiều \(60^\circ \) tâm \(A\).

• Phép phép quay ngược chiều \(300^\circ \) tâm \(A\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tam giác \(ABC\) đều như hình vẽ. Điểm \(B\) biến thành điểm nào? • Phép phép quay thuận chiều \(60^\circ \) tâm \(A\). • Phép phép quay ngược chiều \(300^\circ \) tâm \(A\). (ảnh 1)

a) Tam giác \(ABC\) đều nên \(AB = AC\). Do đó \(C\) thuộc đường tròn \(\left( {A\,;\,\,AB} \right)\).

Xét đường tròn \(\left( {A\,;\,\,AB} \right)\), ta có: \(\widehat {BAC} = 60^\circ \) nên  

Khi đó điểm \(B\) biến thành điểm \(C\) qua phép quay thuận chiều \(60^\circ \) tâm \(A\).

b) Ta có: sđ BnC=360°sđ BmC=360°60°=300° .

Khi đó điểm \({\rm{B}}\) biến thành điểm \({\rm{C}}\) qua phép quay ngược chiếu \(300^\circ \) tâm \({\rm{A}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có bảng sau:

Lần 2

Lần 1

1

2

3

4

1

(1, 1)

(1, 2)

(1, 3)

(1, 4)

2

(2, 1)

(2, 2)

(2, 3)

(2, 4)

3

(3, 1)

(3, 2)

(3, 3)

(3, 4)

4

(4, 1)

(4, 2)

(4, 3)

(4, 4)

Không gian mẫu là:

\[\Omega = \left\{ {\left( {1\,,\,\,1} \right)\,;\,\,\left( {1\,,\,\,2} \right)\,;\,\,\left( {1\,,\,\,3} \right)\,;\,\,\left( {1\,,\,\,4} \right)\,;\,\,\left( {2\,,\,\,1} \right)\,;\,\,\left( {2\,,\,\,2} \right);{\rm{ }}\left( {2\,,\,\,3} \right);{\rm{ }}\left( {2\,,\,\,4} \right);{\rm{ }}\left( {3\,,\,\,1} \right)\,;\,\,\left( {3\,,\,\,2} \right)} \right.\,;\,\,\left( {3\,,\,\,3} \right)\,;\,\,\left( {3\,,\,\,4} \right)\,;{\rm{ }}\] \[\left. {\left( {4\,,\,\,1} \right);\,\,\left( {4\,,\,\,2} \right);\,\,\left( {4\,,\,\,3} \right);\,\,\left( {4\,,\,\,4} \right)} \right\}.\]

Do đó, không gian mẫu có 16 phần tử.

Lời giải

a) Chứng minh rằng \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên một đường tròn. (ảnh 1)

a) Vì \(MC,\,\,MD\) là tiếp tuyến của \(\left( {O\,;\,\,R} \right)\) \(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm) nên \(MC \bot OC,\,\)\(\,MD \bot OD.\)

Suy ra \(\widehat {OCM} = \widehat {ODM} = 90^\circ \) nên \(C,\,\,D\) thuộc đường tròn đường kính \(OM\).

\(H\) là trung điểm của \(AB\)\(AB\) là dây của \(\left( {O\,;\,\,R} \right)\) nên \(OH \bot AB\).

Suy ra \(\widehat {OHM} = 90^\circ \) nên \(H\) thuộc đường tròn đường kính \(OM\).

Vậy \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên đường tròn đường kính \(OM\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP