Câu hỏi:
12/04/2025 197
Cho tam giác \(ABC\) đều như hình vẽ. Điểm \(B\) biến thành điểm nào?
• Phép phép quay thuận chiều \(60^\circ \) tâm \(A\).
• Phép phép quay ngược chiều \(300^\circ \) tâm \(A\).
Cho tam giác \(ABC\) đều như hình vẽ. Điểm \(B\) biến thành điểm nào?
• Phép phép quay thuận chiều \(60^\circ \) tâm \(A\).
• Phép phép quay ngược chiều \(300^\circ \) tâm \(A\).
Quảng cáo
Trả lời:
a) Tam giác \(ABC\) đều nên \(AB = AC\). Do đó \(C\) thuộc đường tròn \(\left( {A\,;\,\,AB} \right)\).
Xét đường tròn \(\left( {A\,;\,\,AB} \right)\), ta có: \(\widehat {BAC} = 60^\circ \) nên
Khi đó điểm \(B\) biến thành điểm \(C\) qua phép quay thuận chiều \(60^\circ \) tâm \(A\).b) Ta có: .
Khi đó điểm \({\rm{B}}\) biến thành điểm \({\rm{C}}\) qua phép quay ngược chiếu \(300^\circ \) tâm \({\rm{A}}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có bảng sau:
Lần 2 Lần 1 |
1 |
2 |
3 |
4 |
1 |
(1, 1) |
(1, 2) |
(1, 3) |
(1, 4) |
2 |
(2, 1) |
(2, 2) |
(2, 3) |
(2, 4) |
3 |
(3, 1) |
(3, 2) |
(3, 3) |
(3, 4) |
4 |
(4, 1) |
(4, 2) |
(4, 3) |
(4, 4) |
Không gian mẫu là:
\[\Omega = \left\{ {\left( {1\,,\,\,1} \right)\,;\,\,\left( {1\,,\,\,2} \right)\,;\,\,\left( {1\,,\,\,3} \right)\,;\,\,\left( {1\,,\,\,4} \right)\,;\,\,\left( {2\,,\,\,1} \right)\,;\,\,\left( {2\,,\,\,2} \right);{\rm{ }}\left( {2\,,\,\,3} \right);{\rm{ }}\left( {2\,,\,\,4} \right);{\rm{ }}\left( {3\,,\,\,1} \right)\,;\,\,\left( {3\,,\,\,2} \right)} \right.\,;\,\,\left( {3\,,\,\,3} \right)\,;\,\,\left( {3\,,\,\,4} \right)\,;{\rm{ }}\] \[\left. {\left( {4\,,\,\,1} \right);\,\,\left( {4\,,\,\,2} \right);\,\,\left( {4\,,\,\,3} \right);\,\,\left( {4\,,\,\,4} \right)} \right\}.\]
Do đó, không gian mẫu có 16 phần tử.
Lời giải
a) Vì \(MC,\,\,MD\) là tiếp tuyến của \(\left( {O\,;\,\,R} \right)\) \(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm) nên \(MC \bot OC,\,\)\(\,MD \bot OD.\)
Suy ra \(\widehat {OCM} = \widehat {ODM} = 90^\circ \) nên \(C,\,\,D\) thuộc đường tròn đường kính \(OM\).
Vì \(H\) là trung điểm của \(AB\) và \(AB\) là dây của \(\left( {O\,;\,\,R} \right)\) nên \(OH \bot AB\).Suy ra \(\widehat {OHM} = 90^\circ \) nên \(H\) thuộc đường tròn đường kính \(OM\).
Vậy \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên đường tròn đường kính \(OM\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.