Câu hỏi:

21/04/2025 130

Câu 6-8. (1,5 điểm) Một đội thanh niên tình nguyện gồm 11 thành viên đến từ các tỉnh, TP như sau: Kon Tum; Bình Phước; Tây Ninh; Bình Dương; Gia Lai; Bà Rịa – Vũng Tàu; Đồng Nai; Đăk Lăk ; Đăk Nông; Lâm Đồng; Thành phố Hồ Chí Minh, mỗi tỉnh, thành phố chỉ có đúng một thành viên trong đội. Chọn ngẫu nhiên một thành viên của đội tình nguyện đó.

a) Gọi \(K\) là tập hợp gồm các kết quả có thể xảy ra đối với thành viên được chọn. Tính số phần tử của tập hợp \(K\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập hợp \(K\) gồm các kết quả xảy ra đối với thành viên được chọn là :

K = {Kon Tum; Bình Phước; Tây Ninh; Bình Dương; Gia Lai; Bà Rịa – Vũng Tàu; Đồng Nai; Đăk Lăk; Đăk Nông; Lâm Đồng; Thành phố Hồ Chí Minh}.

Số phần tử của tập hợp \(K\) là 11.

Câu hỏi cùng đoạn

Câu 2:

b) Tính xác suất của mỗi biến cố: “Thành viên được chọn ra đến từ vùng Tây Nguyên”.

Xem lời giải

verified Lời giải của GV VietJack

b) Có 5 kết quả thuận lợi cho biến cố “Thành viên được chọn ra đến từ vùng Tây Nguyên” đó là Kon Tum; Gia Lai; Đăk Lăk; Đăk Nông; Lâm Đồng.

Vì thế xác suất của biến cố đó là \(\frac{5}{{11}}\).

Câu 3:

c) Tính xác suất của mỗi biến cố: “Thành viên được chọn ra đến từ vùng Đông Nam Bộ”.

Xem lời giải

verified Lời giải của GV VietJack

c) Có 6 kết quả thuận lợi cho biến cố “Thành viên được chọn ra đến từ vùng Đông Nam Bộ” đó là Bình Phước; Tây Ninh; Bình Dương; Bà Rịa – Vũng Tàu; Đồng Nai; Thành phố Hồ Chí Minh.

Vì thế xác suất của biến cố đó là \(\frac{6}{{11}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Điều kiện: \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\{x^2} - 1 \ne 0\\x \ne 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\\left( {x + 1} \right)\left( {x - 1} \right) \ne 0\\x \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\x \ne 0\end{array} \right.\] do đó \[\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne 0\end{array} \right.\].

Vậy điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\].

Lời giải

Các trường hợp có thể xảy ra khi chọn hai tấm thẻ bất kì là:

\[\left\{ { - 2\,;\,\, - 1} \right\}\,;\,\,\left\{ { - 2\,;\,\,0} \right\}\,;\,\,\left\{ { - 2\,;\,\,3} \right\}\,;\,\,\left\{ { - 2\,;\,\,4} \right\};\left\{ { - 2;5} \right\}\];

\[\left\{ { - 1\,;\,\,0} \right\}\,;\,\,\left\{ { - 1\,;\,\,3} \right\}\,;\,\,\left\{ { - 1\,;\,\,4} \right\}\,;\,\,\left\{ { - 1\,;\,\,5} \right\}\];

\[\left\{ {0\,;\,\,3} \right\};\left\{ {0\,;\,\,4} \right\}\,;\,\,\left\{ {0\,;\,\,5} \right\}\]; \[\left\{ {3\,;\,\,4} \right\}\,;\,\,\left\{ {3\,;\,\,5} \right\}\,;\,\,\left\{ {4;5} \right\}\].

Và ngược lại đổi vị trí hai số trong các cặp số trên.

Số các kết quả xảy ra khi chọn hai tấm thẻ phân biệt từ tập hợp đã cho là \[15 \cdot 2 = 30\].

Khi tích của hai số đã chọn bằng 0 thì số hạng đầu tiên bằng 0 hoặc số hạng thứ 2 bằng 0, ta có 10 trường hợp như thế.

Vậy xác xuất cần tìm là \[\frac{{10}}{{30}} = \frac{1}{3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP